From Molecules to Myofibers: Multiscale Imaging of the Myocardium



Pathology in the heart can be examined at several scales, ranging from the molecular to the macroscopic. Traditionally, fluorescence-based techniques such as flow cytometry have been used to study the myocardium at the molecular, cellular, and microscopic levels. Recent advances in magnetic resonance imaging (MRI), however, have made it possible to image certain cellular and molecular events in the myocardium noninvasively in vivo. In addition, diffusion MRI has been used to image myocardial fiber architecture and microstructure in the intact heart. Diffusion MRI tractography, in particular, is providing novel insights into myocardial microsctructure in both health and disease. Recent developments have also been made in fluorescence imaging, making it possible to image fluorescent probes in the heart of small animals noninvasively in vivo. Moreover, techniques have been developed to perform in vivo fluorescence tomography of the mouse heart. These advances in MRI and fluorescence imaging allow events in the myocardium to be imaged at several scales linking molecular changes to alterations in microstructure and microstructural changes to gross function. A complete and integrated picture of pathophysiology in the myocardium is thus obtained. This multiscale approach has the potential to be of significant value not only in preclinical research but, ultimately, in the clinical arena as well.


MRI Myocardium Molecular imaging Microstructure Fluorescence Diffusion MRI 



Dr. Sosnovik has been funded in part by the following National Institutes of Health grant: R01 HL093038.


  1. 1.
    Nahrendorf, M., Sosnovik, D. E., French, B. A., Swirski, F. K., Bengel, F., Sadeghi, M. M., et al. (2009). Multimodality cardiovascular molecular imaging, part II. Circulation Cardiovascular Imaging, 2(1), 56–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Sosnovik, D. E., Nahrendorf, M., & Weissleder, R. (2007). Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 115(15), 2076–2086.PubMedCrossRefGoogle Scholar
  3. 3.
    Sosnovik, D. E., Wang, R., Dai, G., Wang, T., Aikawa, E., Novikov, M., et al. (2009). Diffusion spectrum MRI tractography reveals the presence of a complex network of residual myofibers in infarcted myocardium. Circulation Cardiovascular Imaging, 2(3), 206–212.PubMedCrossRefGoogle Scholar
  4. 4.
    Assomull, R. G., Pennell, D. J., & Prasad, S. K. (2007). Cardiovascular magnetic resonance in the evaluation of heart failure. Heart, 93(8), 985–992.PubMedCrossRefGoogle Scholar
  5. 5.
    Lockie, T., Nagel, E., Redwood, S., & Plein, S. (2009). Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation, 119(12), 1671–1681.PubMedCrossRefGoogle Scholar
  6. 6.
    Korngold, E. C., Jaffer, F. A., Weissleder, R., & Sosnovik, D. E. (2008). Noninvasive imaging of apoptosis in cardiovascular disease. Heart Failure Reviews, 13(2), 163–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Sosnovik, D. E., Garanger, E., Aikawa, E., Nahrendorf, M., Figuiredo, J. L., Dai, G., et al. (2009). Molecular MRI of cardiomyocyte apoptosis with simultaneous delayed-enhancement MRI distinguishes apoptotic and necrotic myocytes in vivo: Potential for midmyocardial salvage in acute ischemia. Circulation Cardiovascular Imaging, 2(6), 460–467.PubMedCrossRefGoogle Scholar
  8. 8.
    Sosnovik, D. E., Schellenberger, E. A., Nahrendorf, M., Novikov, M. S., Matsui, T., Dai, G., et al. (2005). Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magnetic Resonance in Medicine, 54(3), 718–724.PubMedCrossRefGoogle Scholar
  9. 9.
    Lanza, G. M., Winter, P., Caruthers, S., Schmeider, A., Crowder, K., Morawski, A., et al. (2004). Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Current Pharmaceutical Biotechnology, 5(6), 495–507.PubMedCrossRefGoogle Scholar
  10. 10.
    Sosnovik, D. E., Nahrendorf, M., Deliolanis, N., Novikov, M., Aikawa, E., Josephson, L., et al. (2007). Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation, 115(11), 1384–1391.PubMedCrossRefGoogle Scholar
  11. 11.
    Ntziachristos, V., Ripoll, J., Wang, L. V., & Weissleder, R. (2005). Looking and listening to light: The evolution of whole-body photonic imaging. Nature Biotechnology, 23(3), 313–320.PubMedCrossRefGoogle Scholar
  12. 12.
    Weissleder, R., & Ntziachristos, V. (2003). Shedding light onto live molecular targets. Natural Medicines, 9(1), 123–128.CrossRefGoogle Scholar
  13. 13.
    Graves, E. E., Ripoll, J., Weissleder, R., & Ntziachristos, V. (2003). A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Medical Physics, 30(5), 901–911.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer, H., Garofalakis, A., Zacharakis, G., Psycharakis, S., Mamalaki, C., Kioussis, D., et al. (2007). Noncontact optical imaging in mice with full angular coverage and automatic surface extraction. Applied Optics, 46(17), 3617–3627.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, S., & Sosnovik, D. E. (2010). Molecular and microstructural imaging of the myocardium. Curr Cardiovasc Imaging Rep, 3(1), 26–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Sosnovik, D. E., Wang, R., Dai, G., Reese, T. G., & Wedeen, V. J. (2009). Diffusion MR tractography of the heart. Journal of Cardiovascular Magnetic Resonance, 11, 47.PubMedCrossRefGoogle Scholar
  17. 17.
    Kramer, C. M., Sinusas, A. J., Sosnovik, D. E., French, B. A., & Bengel, F. M. (2010). Multimodality imaging of myocardial injury and remodeling. Journal of Nuclear Medicine, 51(Suppl 1), 107S–121S.PubMedCrossRefGoogle Scholar
  18. 18.
    Sosnovik, D. E., Nahrendorf, M., & Weissleder, R. (2008). Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Research in Cardiology, 103(2), 122–130.PubMedCrossRefGoogle Scholar
  19. 19.
    Montet, X., Montet-Abou, K., Reynolds, F., Weissleder, R., & Josephson, L. (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia, 8(3), 214–222.PubMedCrossRefGoogle Scholar
  20. 20.
    Taktak, S., Sosnovik, D., Cima, M. J., Weissleder, R., & Josephson, L. (2007). Multiparameter magnetic relaxation switch assays. Analytical Chemistry, 79(23), 8863–8869.PubMedCrossRefGoogle Scholar
  21. 21.
    Uppal, R., & Caravan, P. (2010). Targeted probes for cardiovascular MR imaging. Future Medicinal Chemistry, 2(3), 451–470.PubMedCrossRefGoogle Scholar
  22. 22.
    Caravan, P. (2009). Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: Design and mechanism of action. Accounts of Chemical Research, 42(7), 851–862.PubMedCrossRefGoogle Scholar
  23. 23.
    Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204(12), 3037–3047.PubMedCrossRefGoogle Scholar
  24. 24.
    Farrar, C. T., Dai, G., Novikov, M., Rosenzweig, A., Weissleder, R., Rosen, B. R., et al. (2008). Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR in Biomedicine, 21(5), 453–463.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, J. W., Querol Sans, M., Bogdanov, A., Jr., & Weissleder, R. (2006). Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology, 240(2), 473–481.PubMedCrossRefGoogle Scholar
  26. 26.
    Nahrendorf, M., Sosnovik, D., Chen, J. W., Panizzi, P., Figueiredo, J. L., Aikawa, E., et al. (2008). Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia–reperfusion injury. Circulation, 117(9), 1153–1160.PubMedCrossRefGoogle Scholar
  27. 27.
    Oostendorp, M., Douma, K., Wagenaar, A., Slenter, J. M., Hackeng, T. M., van Zandvoort, M. A., et al. (2010). Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation, 121(6), 775–783.PubMedCrossRefGoogle Scholar
  28. 28.
    Verjans, J. W., van de Borne, S. W., Hofstra, L., & Narula, J. (2011). Molecular imaging of myocardial remodeling after infarction. Methods in Molecular Biology, 680, 227–235.PubMedCrossRefGoogle Scholar
  29. 29.
    Caravan, P., Das, B., Dumas, S., Epstein, F. H., Helm, P. A., Jacques, V., et al. (2007). Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angewandte Chemie (International Ed. in English), 46(43), 8171–8173.CrossRefGoogle Scholar
  30. 30.
    Huang, T. Y., Liu, Y. J., Stemmer, A., & Poncelet, B. P. (2007). T2 measurement of the human myocardium using a T2-prepared transient-state TrueFISP sequence. Magnetic Resonance in Medicine, 57(5), 960–966.PubMedCrossRefGoogle Scholar
  31. 31.
    Waters, E. A., Chen, J., Allen, J. S., Zhang, H., Lanza, G. M., & Wickline, S. A. (2008). Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. Journal of Cardiovascular Magnetic Resonance, 10, 43.PubMedCrossRefGoogle Scholar
  32. 32.
    Weber, O. M., Speier, P., Scheffler, K., & Bieri, O. (2009). Assessment of magnetization transfer effects in myocardial tissue using balanced steady-state free precession (bSSFP) cine MRI. Magnetic Resonance in Medicine, 62(3), 699–705.PubMedCrossRefGoogle Scholar
  33. 33.
    Zun, Z., Wong, E. C., & Nayak, K. S. (2009). Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magnetic Resonance in Medicine, 62(4), 975–983.PubMedCrossRefGoogle Scholar
  34. 34.
    Nahrendorf, M., Sosnovik, D. E., Waterman, P., Swirski, F. K., Pande, A. N., Aikawa, E., et al. (2007). Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circulation Research, 100(8), 1218–1225.PubMedCrossRefGoogle Scholar
  35. 35.
    Mahmood, U., Tung, C. H., Bogdanov, A., Jr., & Weissleder, R. (1999). Near-infrared optical imaging of protease activity for tumor detection. Radiology, 213(3), 866–870.PubMedGoogle Scholar
  36. 36.
    Streeter, D. D., Jr., Spotnitz, H. M., Patel, D. P., Ross, J., Jr., & Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research, 24(3), 339–347.PubMedGoogle Scholar
  37. 37.
    Streeter, D. D., Jr., & Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circulation Research, 33(6), 656–664.PubMedGoogle Scholar
  38. 38.
    Reese, T. G., Weisskoff, R. M., Smith, R. N., Rosen, B. R., Dinsmore, R. E., & Wedeen, V. J. (1995). Imaging myocardial fiber architecture in vivo with magnetic resonance. Magnetic Resonance in Medicine, 34(6), 786–791.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen, J., Song, S. K., Liu, W., McLean, M., Allen, J. S., Tan, J., et al. (2003). Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. American Journal of Physiology. Heart and Circulatory Physiology, 285(3), H946–H954.PubMedGoogle Scholar
  40. 40.
    Strijkers, G. J., Bouts, A., Blankesteijn, W. M., Peeters, T. H., Vilanova, A., van Prooijen, M. C., et al. (2009). Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse. NMR in Biomedicine, 22(2), 182–190.PubMedCrossRefGoogle Scholar
  41. 41.
    Lazar, M. (2010). Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine, 23(7), 821–835.PubMedCrossRefGoogle Scholar
  42. 42.
    Hagmann, P., Jonasson, L., Maeder, P., Thiran, J. P., Wedeen, V. J., & Meuli, R. (2006). Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 26(Suppl 1), S205–S223.PubMedCrossRefGoogle Scholar
  43. 43.
    Kuo, L. W., Chen, J. H., Wedeen, V. J., & Tseng, W. Y. (2008). Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage, 41(1), 7–18.PubMedCrossRefGoogle Scholar
  44. 44.
    Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., et al. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267–1277.PubMedCrossRefGoogle Scholar
  45. 45.
    Tseng, W. Y., Reese, T. G., Weisskoff, R. M., & Wedeen, V. J. (1999). Cardiac diffusion tensor MRI in vivo without strain correction. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 42(2), 393–403.Google Scholar
  46. 46.
    Gamper, U., Boesiger, P., & Kozerke, S. (2007). Diffusion imaging of the in vivo heart using spin echoes—considerations on bulk motion sensitivity. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 57(2), 331–337.Google Scholar
  47. 47.
    Wu, M. T., Tseng, W. Y., Su, M. Y., Liu, C. P., Chiou, K. R., Wedeen, V. J., et al. (2006). Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: Correlation with viability and wall motion. Circulation, 114(10), 1036–1045.PubMedCrossRefGoogle Scholar
  48. 48.
    Wu, M. T., Su, M. Y., Huang, Y. L., Chiou, K. R., Yang, P., Pan, H. B., et al. (2009). Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac MR: correlation with left ventricular structure and function. Circulation Cardiovascular imaging, 2(1), 32–40. 36 p following 40.PubMedCrossRefGoogle Scholar
  49. 49.
    Toussaint, N., Sermesant, M., Stoeck, C. T., Kozerke, S., & Batchelor, P. G. (2010). In vivo human 3D cardiac fibre architecture: Reconstruction using curvilinear interpolation of diffusion tensor images. Med Image Comput Comput Assist Interv, 13(Pt 1), 418–425.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Martinos Center for Biomedical Imaging, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Cardiology Division, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUSA

Personalised recommendations