Intravascular Imaging Tools in the Cardiac Catheterization Laboratory: Comprehensive Assessment of Anatomy and Physiology

  • Parham Eshtehardi
  • Jennifer Luke
  • Michael C. McDaniel
  • Habib Samady
Article

Abstract

Intravascular imaging modalities have an imperative role in contemporary cardiovascular research. Currently, there are several invasive imaging modalities available in the cardiac catheterization laboratory and new technologies are under development. In the current review, we aimed to provide an update on the research applications of contemporary intravascular imaging tools in the cardiac catheterization laboratory. For the purpose of this review, we separately discuss imaging tools for assessment of epicardial disease (fractional flow reserve and hyperemic stenosis resistance), microvascular function (coronary flow reserve, hyperemic microvascular resistance, and index of microcirculatory resistance), endothelial function, atherosclerotic plaque and vascular remodeling (intravascular ultrasound, optical coherence tomography, angioscopy, and near-infrared spectroscopy), and finally the emerging modalities (palpography and wall shear stress profiling).

Keywords

Intravascular imaging Coronary artery Atherosclerosis Wall shear stress Ultrasound Microvasculature Physiology 

Abbreviations

CAD

Coronary artery disease

CFR

Coronary flow reserve

FFR

Fractional flow reserve

hMRv

Hyperemic myocardial resistance index

HSR

Hyperemic stenosis resistance index

IMR

Index of microcirculatory resistance

IVUS

Intravascular ultrasound

NIRS

Near-infrared spectroscopy

OCT

Optical coherence tomography

WSS

Wall shear stress

References

  1. 1.
    Kern, M. J., & Samady, H. (2010). Current concepts of integrated coronary physiology in the catheterization laboratory. Journal of the American College of Cardiology, 55(3), 173–185. doi:10.1016/j.jacc.2009.06.062.PubMedCrossRefGoogle Scholar
  2. 2.
    Kern, M. J., Lerman, A., Bech, J. W., De Bruyne, B., Eeckhout, E., Fearon, W. F., et al. (2006). Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American heart association committee on diagnostic and interventional cardiac catheterization, council on clinical cardiology. Circulation, 114(12), 1321–1341. doi:10.1161/circulationaha.106.177276.PubMedCrossRefGoogle Scholar
  3. 3.
    Lim, M. J., & Kern, M. J. (2006). Coronary pathophysiology in the cardiac catheterization laboratory. Current Problems in Cardiology, 31(8), 493–550. doi:10.1016/j.cpcardiol.2006.04.002.PubMedCrossRefGoogle Scholar
  4. 4.
    Lerakis, S., Barry, W. L., & Stouffer, G. A. (1999). Use of coronary flow reserve to evaluate the physiologic significance of coronary artery disease. The American Journal of the Medical Sciences, 318(4), 281–285.PubMedCrossRefGoogle Scholar
  5. 5.
    Rigo, F., Varga, Z., Di Pede, F., Grassi, G., Turiano, G., Zuin, G., et al. (2004). Early assessment of coronary flow reserve by transthoracic Doppler echocardiography predicts late remodeling in reperfused anterior myocardial infarction. Journal of the American Society of Echocardiography, 17(7), 750–755. doi:10.1016/j.echo.2004.04.023.PubMedCrossRefGoogle Scholar
  6. 6.
    Chamuleau, S. A., Siebes, M., Meuwissen, M., Koch, K. T., Spaan, J. A., & Piek, J. J. (2003). Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. American Journal of Physiology. Heart and Circulatory Physiology, 285(5), H2194–H2200. doi:10.1152/ajpheart.01021.2002.PubMedGoogle Scholar
  7. 7.
    Fearon, W. F., Aarnoudse, W., Pijls, N. H., De Bruyne, B., Balsam, L. B., Cooke, D. T., et al. (2004). Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation, 109(19), 2269–2272. doi:10.1161/01.cir.0000128669.99355.cb.PubMedCrossRefGoogle Scholar
  8. 8.
    Fearon, W. F., Shah, M., Ng, M., Brinton, T., Wilson, A., Tremmel, J. A., et al. (2008). Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 51(5), 560–565. doi:10.1016/j.jacc.2007.08.062.PubMedCrossRefGoogle Scholar
  9. 9.
    Fearon, W. F., Hirohata, A., Nakamura, M., Luikart, H., Lee, D. P., Vagelos, R. H., et al. (2006). Discordant changes in epicardial and microvascular coronary physiology after cardiac transplantation: physiologic investigation for transplant arteriopathy II (PITA II) study. The Journal of Heart and Lung Transplantation, 25(7), 765–771. doi:10.1016/j.healun.2006.03.003.PubMedCrossRefGoogle Scholar
  10. 10.
    Fearon, W. F., Balsam, L. B., Farouque, H. M., Caffarelli, A. D., Robbins, R. C., Fitzgerald, P. J., et al. (2003). Novel index for invasively assessing the coronary microcirculation. Circulation, 107(25), 3129–3132. doi:10.1161/01.cir.0000080700.98607.d1.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamada, R., Okura, H., Kume, T., Neishi, Y., Kawamoto, T., Miyamoto, Y., et al. (2010). Target lesion thin-cap fibroatheroma defined by virtual histology intravascular ultrasound affects microvascular injury during percutaneous coronary intervention in patients with angina pectoris. Circulation Journal, 74(8), 1658–1662.PubMedCrossRefGoogle Scholar
  12. 12.
    McGeoch, R., Watkins, S., Berry, C., Steedman, T., Davie, A., Byrne, J., et al. (2010). The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv, 3(7), 715–722. doi:10.1016/j.jcin.2010.04.009.PubMedCrossRefGoogle Scholar
  13. 13.
    Pijls, N. H., Van Gelder, B., Van der Voort, P., Peels, K., Bracke, F. A., Bonnier, H. J., et al. (1995). Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation, 92(11), 3183–3193.PubMedGoogle Scholar
  14. 14.
    McDaniel, M., & Samady, H. (2011). Use of coronary physiology in the catheterization laboratory to guide treatment in patients with coronary artery disease. Current Treatment Options in Cardiovascular Medicine, 13(1), 35–45. doi:10.1007/s11936-010-0102-9.PubMedCrossRefGoogle Scholar
  15. 15.
    Tonino, P. A., De Bruyne, B., Pijls, N. H., Siebert, U., Ikeno, F., & Van’t Veer, M. (2009). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The New England Journal of Medicine, 360(3), 213–224. doi:10.1056/NEJMoa0807611.PubMedCrossRefGoogle Scholar
  16. 16.
    Rutz, T., Gloekler, S., de Marchi, S. F., Traupe, T., Meier, P., Eshtehardi, P., et al. (2011). Coronary collateral function in the transplanted heart: propensity score matching with coronary artery disease. Heart, 97(7), 557–63. doi:10.1136/hrt.2010.215137.PubMedCrossRefGoogle Scholar
  17. 17.
    Traupe, T., Gloekler, S., de Marchi, S. F., Werner, G. S., & Seiler, C. (2010). Assessment of the human coronary collateral circulation. Circulation, 122(12), 1210–1220. doi:10.1161/circulationaha.109.930651.PubMedCrossRefGoogle Scholar
  18. 18.
    Meier, P., Gloekler, S., Zbinden, R., Beckh, S., de Marchi, S. F., Zbinden, S., et al. (2007). Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 116(9), 975–983. doi:10.1161/circulationaha.107.703959.PubMedCrossRefGoogle Scholar
  19. 19.
    Bech, G. J., Droste, H., Pijls, N. H., De Bruyne, B., Bonnier, J. J., Michels, H. R., et al. (2001). Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart, 86(5), 547–552.PubMedCrossRefGoogle Scholar
  20. 20.
    Pijls, N. H., van Schaardenburgh, P., Manoharan, G., Boersma, E., Bech, J. W., & van’t Veer, M. (2007). Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. Journal of the American College of Cardiology, 49(21), 2105–2111. doi:10.1016/j.jacc.2007.01.087.PubMedCrossRefGoogle Scholar
  21. 21.
    Samady, H., McDaniel, M., Veledar, E., De Bruyne, B., Pijls, N. H., Fearon, W. F., et al. (2009). Baseline fractional flow reserve and stent diameter predict optimal post-stent fractional flow reserve and major adverse cardiac events after bare-metal stent deployment. JACC Cardiovasc Interv, 2(4), 357–363. doi:10.1016/j.jcin.2009.01.008.PubMedCrossRefGoogle Scholar
  22. 22.
    Pijls, N. H., Klauss, V., Siebert, U., Powers, E., Takazawa, K., Fearon, W. F., et al. (2002). Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation, 105(25), 2950–2954.PubMedCrossRefGoogle Scholar
  23. 23.
    Murtagh, B., Higano, S., Lennon, R., Mathew, V., Holmes, D. R., Jr., & Lerman, A. (2003). Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. American Heart Journal, 146(1), 99–105. doi:10.1016/s0002-8703(03)00120-0.PubMedCrossRefGoogle Scholar
  24. 24.
    de Bruyne, B., Bartunek, J., Sys, S. U., Pijls, N. H., Heyndrickx, G. R., & Wijns, W. (1996). Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation, 94(8), 1842–1849.PubMedGoogle Scholar
  25. 25.
    Meuwissen, M., Chamuleau, S. A., Siebes, M., Schotborgh, C. E., Koch, K. T., de Winter, R. J., et al. (2001). Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation, 103(2), 184–187.PubMedGoogle Scholar
  26. 26.
    Meuwissen, M., Siebes, M., Chamuleau, S. A., van Eck-Smit, B. L., Koch, K. T., de Winter, R. J., et al. (2002). Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation, 106(4), 441–446.PubMedCrossRefGoogle Scholar
  27. 27.
    Meuwissen, M., Chamuleau, S. A., Siebes, M., de Winter, R. J., Koch, K. T., Dijksman, L. M., et al. (2008). The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 71(3), 291–297. doi:10.1002/ccd.21331.PubMedCrossRefGoogle Scholar
  28. 28.
    Frick, M., & Weidinger, F. (2007). Endothelial function: a surrogate endpoint in cardiovascular studies? Current Pharmaceutical Design, 13(17), 1741–1750.PubMedCrossRefGoogle Scholar
  29. 29.
    Deanfield, J. E., Halcox, J. P., & Rabelink, T. J. (2007). Endothelial function and dysfunction: testing and clinical relevance. Circulation, 115(10), 1285–1295. doi:10.1161/circulationaha.106.652859.PubMedGoogle Scholar
  30. 30.
    Halcox, J. P., Schenke, W. H., Zalos, G., Mincemoyer, R., Prasad, A., Waclawiw, M. A., et al. (2002). Prognostic value of coronary vascular endothelial dysfunction. Circulation, 106(6), 653–658.PubMedCrossRefGoogle Scholar
  31. 31.
    Ganz, P., & Vita, J. A. (2003). Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation, 108(17), 2049–2053. doi:10.1161/01.cir.0000089507.19675.f9.PubMedCrossRefGoogle Scholar
  32. 32.
    Quyyumi, A. A. (2003). Prognostic value of endothelial function. The American Journal of Cardiology, 91(12A), 19H–24H.PubMedCrossRefGoogle Scholar
  33. 33.
    Widlansky, M. E., Gokce, N., Keaney, J. F., Jr., & Vita, J. A. (2003). The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology, 42(7), 1149–1160.PubMedCrossRefGoogle Scholar
  34. 34.
    Lavi, S., Bae, J. H., Rihal, C. S., Prasad, A., Barsness, G. W., Lennon, R. J., et al. (2009). Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart, 95(18), 1525–1530. doi:10.1136/hrt.2009.166017.PubMedCrossRefGoogle Scholar
  35. 35.
    Maehara, A., Mintz, G. S., & Weissman, N. J. (2009). Advances in intravascular imaging. Circ Cardiovasc Interv, 2(5), 482–490. doi:10.1161/circinterventions.109.868398.PubMedCrossRefGoogle Scholar
  36. 36.
    De Scheerder, I., De Man, F., Herregods, M. C., Wilczek, K., Barrios, L., Raymenants, E., et al. (1994). Intravascular ultrasound versus angiography for measurement of luminal diameters in normal and diseased coronary arteries. American Heart Journal, 127(2), 243–251.PubMedCrossRefGoogle Scholar
  37. 37.
    Tobis, J., Azarbal, B., & Slavin, L. (2007). Assessment of intermediate severity coronary lesions in the catheterization laboratory. Journal of the American College of Cardiology, 49(8), 839–848. doi:10.1016/j.jacc.2006.10.055.PubMedCrossRefGoogle Scholar
  38. 38.
    Fischer, J. J., Samady, H., McPherson, J. A., Sarembock, I. J., Powers, E. R., Gimple, L. W., et al. (2002). Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. The American Journal of Cardiology, 90(3), 210–215.PubMedCrossRefGoogle Scholar
  39. 39.
    Briguori, C., Tobis, J., Nishida, T., Vaghetti, M., Albiero, R., Di Mario, C., et al. (2002). Discrepancy between angiography and intravascular ultrasound when analysing small coronary arteries. European Heart Journal, 23(3), 247–254.PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen, L. O., Thayssen, P., Mintz, G. S., Egede, R., Maeng, M., Junker, A., et al. (2008). Comparison of intravascular ultrasound and angiographic assessment of coronary reference segment size in patients with type 2 diabetes mellitus. The American Journal of Cardiology, 101(5), 590–595.PubMedCrossRefGoogle Scholar
  41. 41.
    Sipahi, I., Nicholls, S. J., & Tuzcu, E. M. (2006). Intravascular ultrasound in the current percutaneous coronary intervention era. Cardiology Clinics, 24(2), 163–173. doi:10.1016/j.ccl.2006.01.003.PubMedCrossRefGoogle Scholar
  42. 42.
    Briguori, C., Anzuini, A., Airoldi, F., Gimelli, G., Nishida, T., Adamian, M., et al. (2001). Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. The American Journal of Cardiology, 87(2), 136–141.PubMedCrossRefGoogle Scholar
  43. 43.
    Prati, F., Arbustini, E., Labellarte, A., Dal Bello, B., Mallus, M. T., Sommariva, L., et al. (2000). Intravascular ultrasound insights into plaque composition. Zeitschrift für Kardiologie, 89(Suppl 2), 117–123.PubMedCrossRefGoogle Scholar
  44. 44.
    Nair, A., Kuban, B. D., Tuzcu, E. M., Schoenhagen, P., Nissen, S. E., & Vince, D. G. (2002). Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, 106(17), 2200–2206.PubMedCrossRefGoogle Scholar
  45. 45.
    Nair, A., Margolis, M. P., Kuban, B. D., & Vince, D. G. (2007). Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention, 3(1), 113–120.PubMedGoogle Scholar
  46. 46.
    Nasu, K., Tsuchikane, E., Katoh, O., Vince, D. G., Virmani, R., Surmely, J. F., et al. (2006). Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. Journal of the American College of Cardiology, 47(12), 2405–2412. doi:10.1016/j.jacc.2006.02.044.PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia-Garcia, H. M., Mintz, G. S., Lerman, A., Vince, D. G., Margolis, M. P., van Es, G. A., et al. (2009). Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention, 5(2), 177–189.PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia-Garcia, H. M., Gonzalo, N., Granada, J. F., Regar, E., & Serruys, P. W. (2008). Diagnosis and treatment of coronary vulnerable plaques. Expert Review of Cardiovascular Therapy, 6(2), 209–222. doi:10.1586/14779072.6.2.209.PubMedCrossRefGoogle Scholar
  49. 49.
    Matter, C. M., Stuber, M., & Nahrendorf, M. (2009). Imaging of the unstable plaque: how far have we got? European Heart Journal, 30(21), 2566–2574. doi:10.1093/eurheartj/ehp419.PubMedCrossRefGoogle Scholar
  50. 50.
    Bezerra, H. G., Costa, M. A., Guagliumi, G., Rollins, A. M., & Simon, D. I. (2009). Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv, 2(11), 1035–1046. doi:10.1016/j.jcin.2009.06.019.PubMedCrossRefGoogle Scholar
  51. 51.
    Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D., & Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7), 1282–1292. doi:10.1161/atvbaha.108.179739.PubMedCrossRefGoogle Scholar
  52. 52.
    Coletta, J., Suzuki, N., Nascimento, B. R., Bezerra, H. G., Rosenthal, N., Guagliumi, G., et al. (2010). Use of optical coherence tomography for accurate characterization of atherosclerosis. Arquivos Brasileiros de Cardiologia, 94(2), 250–254. 268–272, 254–259.PubMedCrossRefGoogle Scholar
  53. 53.
    Prati, F., Regar, E., Mintz, G. S., Arbustini, E., Di Mario, C., Jang, I. K., et al. (2010). Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal, 31(4), 401–415. doi:10.1093/eurheartj/ehp433.PubMedCrossRefGoogle Scholar
  54. 54.
    Regar, E., van Soest, G., Bruining, N., Constantinescu, A. A., van Geuns, R. J., van der Giessen, W., et al. (2010). Optical coherence tomography in patients with acute coronary syndrome. EuroIntervention, 6 Suppl G, G154–G160. doi:10.4244/.PubMedGoogle Scholar
  55. 55.
    Kubo, T., & Akasaka, T. (2008). Recent advances in intracoronary imaging techniques: focus on optical coherence tomography. Expert Review of Medical Devices, 5(6), 691–697. doi:10.1586/17434440.5.6.691.PubMedCrossRefGoogle Scholar
  56. 56.
    Uchida, Y. (2010). Recent advances in coronary angioscopy. Journal of Cardiology. doi:10.1016/j.jjcc.2010.11.001.Google Scholar
  57. 57.
    Ueda, Y., Ohtani, T., Shimizu, M., Hirayama, A., & Kodama, K. (2004). Assessment of plaque vulnerability by angioscopic classification of plaque color. American Heart Journal, 148(2), 333–335. doi:10.1016/j.ahj.2004.03.047.PubMedCrossRefGoogle Scholar
  58. 58.
    Miyamoto, A., Prieto, A. R., Friedl, S. E., Lin, F. C., Muller, J. E., Nesto, R. W., et al. (2004). Atheromatous plaque cap thickness can be determined by quantitative color analysis during angioscopy: implications for identifying the vulnerable plaque. Clinical Cardiology, 27(1), 9–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Franzen, D., Sechtem, U., & Hopp, H. W. (1998). Comparison of angioscopic, intravascular ultrasonic, and angiographic detection of thrombus in coronary stenosis. The American Journal of Cardiology, 82(10), 1273–1275. A1279.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohsawa, H., Uchida, Y., Fujimori, Y., Hirose, J., Noike, H., Tokuhiro, K., et al. (2002). Angioscopic evaluation of stabilizing effects of an antilipemic agent, bezafibrate, on coronary plaques in patients with coronary artery disease: a multicenter prospective study. Japanese Heart Journal, 43(4), 319–331.PubMedCrossRefGoogle Scholar
  61. 61.
    Alfonso, F., Hernandez, R., Goicolea, J., Silva, J. C., Segovia, J., Banuelos, C., et al. (1994). Angiographic deterioration of the previously dilated coronary segment induced by angioscopic examination. The American Journal of Cardiology, 74(6), 604–606.PubMedCrossRefGoogle Scholar
  62. 62.
    Schaar, J. A., Mastik, F., Regar, E., den Uil, C. A., Gijsen, F. J., Wentzel, J. J., et al. (2007). Current diagnostic modalities for vulnerable plaque detection. Current Pharmaceutical Design, 13(10), 995–1001.PubMedCrossRefGoogle Scholar
  63. 63.
    Bruggink, J. L., Meerwaldt, R., van Dam, G. M., Lefrandt, J. D., Slart, R. H., Tio, R. A., et al. (2010). Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. The International Journal of Cardiovascular Imaging, 26(1), 111–119. doi:10.1007/s10554-009-9500-z.PubMedCrossRefGoogle Scholar
  64. 64.
    Moreno, P. R., Lodder, R. A., Purushothaman, K. R., Charash, W. E., O’Connor, W. N., & Muller, J. E. (2002). Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation, 105(8), 923–927.PubMedCrossRefGoogle Scholar
  65. 65.
    Waxman, S., Dixon, S. R., L’Allier, P., Moses, J. W., Petersen, J. L., Cutlip, D., et al. (2009). In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging, 2(7), 858–868. doi:10.1016/j.jcmg.2009.05.001.PubMedCrossRefGoogle Scholar
  66. 66.
    Garg, S., Serruys, P. W., van der Ent, M., Schultz, C., Mastik, F., van Soest, G., et al. (2010). First use in patients of a combined near infra-red spectroscopy and intra-vascular ultrasound catheter to identify composition and structure of coronary plaque. EuroIntervention, 5(6), 755–756.PubMedCrossRefGoogle Scholar
  67. 67.
    Sharif, F., & Murphy, R. T. (2010). Current status of vulnerable plaque detection. Catheterization and Cardiovascular Interventions, 75(1), 135–144. doi:10.1002/ccd.22164.PubMedCrossRefGoogle Scholar
  68. 68.
    Schaar, J. A., De Korte, C. L., Mastik, F., Strijder, C., Pasterkamp, G., Boersma, E., et al. (2003). Characterizing vulnerable plaque features with intravascular elastography. Circulation, 108(21), 2636–2641. doi:10.1161/01.cir.0000097067.96619.1f.PubMedCrossRefGoogle Scholar
  69. 69.
    Schaar, J. A., van der Steen, A. F., Mastik, F., Baldewsing, R. A., & Serruys, P. W. (2006). Intravascular palpography for vulnerable plaque assessment. Journal of the American College of Cardiology, 47(8 Suppl), C86–C91. doi:10.1016/j.jacc.2006.01.035.PubMedCrossRefGoogle Scholar
  70. 70.
    Dhawan, S. S., Avati Nanjundappa, R. P., Branch, J. R., Taylor, W. R., Quyyumi, A. A., Jo, H., et al. (2010). Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 8(4), 545–556. doi:10.1586/erc.10.28.PubMedCrossRefGoogle Scholar
  71. 71.
    Eshtehardi, P., McDaniel, M., Suo, J., Dhawan, S., Avati Nanjundappa, R., Sawaya, F., et al. (2010). Association of wall shear stress with coronary plaque progression and composition: a serial human radiofrequency intravascular ultrasound study. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, e183–e321.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Parham Eshtehardi
    • 1
  • Jennifer Luke
    • 1
  • Michael C. McDaniel
    • 1
  • Habib Samady
    • 1
  1. 1.Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations