A Chemical Biology Approach to Myocardial Regeneration

  • Erik Willems
  • Marion Lanier
  • Elvira Forte
  • Frederick Lo
  • John Cashman
  • Mark Mercola


Heart failure is one of the major causes of death in the Western world because cardiac muscle loss is largely irreversible and can lead to a relentless decline in cardiac function. Novel therapies are needed since the only therapy to effectively replace lost myocytes today is transplantation of the entire heart. The advent of embryonic and induced pluripotent stem cell (ESC/iPSC) technologies offers the unprecedented possibility of devising cell replacement therapies for numerous degenerative disorders. Not only are ESCs and iPSCs a plausible source of cardiomyocytes in vitro for transplantation, they are also useful tools to elucidate the biology of stem cells that reside in the adult heart and define signaling molecules that might enhance the limited regenerative capability of the adult human heart. Here, we review the extracellular factors that control stem cell cardiomyogenesis and describe new approaches that combine embryology with stem cell biology to discover drug-like small molecules that stimulate cardiogenesis and potentially contribute to the development of pharmaceutical strategies for heart muscle regeneration.


Cardiogenesis Small molecules Drug discovery Regeneration 


  1. 1.
    AHA (2010). AHA Update 2010. http://www.aha.org.
  2. 2.
    Olson, E. N., & Schneider, M. D. (2003). Sizing up the heart: development redux in disease. Genes & Development, 17, 1937–1956.CrossRefGoogle Scholar
  3. 3.
    Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., & Gepstein, L. (2002). High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circulation Research, 91, 659–661.PubMedCrossRefGoogle Scholar
  4. 4.
    Binah, O., et al. (2007). Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. Journal of Electrocardiology, 40, S192–S196.PubMedCrossRefGoogle Scholar
  5. 5.
    Kita-Matsuo, H., et al. (2009). Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS ONE, 4, e5046.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, J., Fu, J. D., Siu, C. W., & Li, R. A. (2007). Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem cells (Dayton, Ohio), 25, 3038–3044.CrossRefGoogle Scholar
  7. 7.
    Dolnikov, K., et al. (2006). Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem cells (Dayton, Ohio), 24, 236–245.CrossRefGoogle Scholar
  8. 8.
    Laflamme, M. A., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. The American Journal of Pathology, 167, 663–671.PubMedCrossRefGoogle Scholar
  9. 9.
    Germanguz, I., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J Cell Mol Med, 15, 38–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Laflamme, M. A., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRefGoogle Scholar
  11. 11.
    van Laake, L. W., Passier, R., Doevendans, P. A., & Mummery, C. L. (2008). Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation Research, 102, 1008–1010.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91, 501–508.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, L., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453, 524–528.PubMedCrossRefGoogle Scholar
  14. 14.
    Bergmann, O., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.PubMedCrossRefGoogle Scholar
  15. 15.
    Hsieh, P. C., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.PubMedCrossRefGoogle Scholar
  16. 16.
    Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhn, B., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., et al. (2010). Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One, 5, e12559.PubMedCrossRefGoogle Scholar
  19. 19.
    Wojakowski, W., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110, 3213–3220.PubMedCrossRefGoogle Scholar
  20. 20.
    Limana, F., et al. (2010). Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. J Mol Cell Cardiol, 48, 609–618.PubMedCrossRefGoogle Scholar
  21. 21.
    Di Meglio, F., et al. (2010). Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: a useful clue about the self-renewal potential of the adult human heart? Int J Cardiol, 145(2), e44–e46.PubMedCrossRefGoogle Scholar
  22. 22.
    Beltrami, A. P., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRefGoogle Scholar
  23. 23.
    Oh, H., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.PubMedCrossRefGoogle Scholar
  24. 24.
    Laugwitz, K. L., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRefGoogle Scholar
  25. 25.
    Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239–243.PubMedCrossRefGoogle Scholar
  26. 26.
    Messina, E., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith, R. R., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRefGoogle Scholar
  28. 28.
    Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298, 2188–2190.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang, M., et al. (2001). Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33, 907–921.PubMedCrossRefGoogle Scholar
  30. 30.
    Fransioli, J., et al. (2008). Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells, 26, 1315–1324.PubMedCrossRefGoogle Scholar
  31. 31.
    Kubo, H., et al. (2008). Increased cardiac myocyte progenitors in failing human hearts. Circulation, 118, 649–657.PubMedCrossRefGoogle Scholar
  32. 32.
    Raya, A., et al. (2003). Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11889–11895.PubMedCrossRefGoogle Scholar
  33. 33.
    Kikuchi, K., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.PubMedCrossRefGoogle Scholar
  34. 34.
    Jopling, C., et al. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.PubMedCrossRefGoogle Scholar
  35. 35.
    MacLellan, W. R., & Schneider, M. D. (2000). Genetic dissection of cardiac growth control pathways. Annual Review of Physiology, 62, 289–320.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubart, M., & Field, L. J. (2006). Cardiac regeneration: repopulating the heart. Annual Review of Physiology, 68, 29–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-{beta} signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA, 103(45), 16806–16811.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L., & Murphy, K. M. (2006). Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133, 3787–3796.PubMedCrossRefGoogle Scholar
  39. 39.
    D'Amour, K. A., et al. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.PubMedCrossRefGoogle Scholar
  40. 40.
    Yasunaga, M., et al. (2005). Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 23, 1542–1550.PubMedCrossRefGoogle Scholar
  41. 41.
    Willems, E., & Leyns, L. (2008). Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity. Differentiation, 76, 745–759.PubMedCrossRefGoogle Scholar
  42. 42.
    Marvin, M. J., Di Rocco, G., Gardiner, A., Bush, S. M., & Lassar, A. B. (2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes & Development, 15, 316–327.CrossRefGoogle Scholar
  43. 43.
    Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15, 304–315.CrossRefGoogle Scholar
  44. 44.
    Foley, A. C., Korol, O., Timmer, A. M., & Mercola, M. (2007). Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Developmental Biology, 303, 57–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Foley, A. C., & Mercola, M. (2005). Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes & Development, 19, 387–396.CrossRefGoogle Scholar
  46. 46.
    Naito, A. T., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 19812–19817.PubMedCrossRefGoogle Scholar
  47. 47.
    Ueno, S., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 9685–9690.PubMedCrossRefGoogle Scholar
  48. 48.
    Kitamura, R., et al. (2007). Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells. Circulation Research, 101, 78–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, V. C., Stull, R., Joo, D., Cheng, X., & Keller, G. (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nature Biotechnology, 26, 1169–1178.PubMedCrossRefGoogle Scholar
  50. 50.
    Qyang, Y., et al. (2007). The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell, 1, 165–179.PubMedCrossRefGoogle Scholar
  51. 51.
    Kwon, C., et al. (2007). Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104, 10894–10899.PubMedCrossRefGoogle Scholar
  52. 52.
    Tirosh-Finkel, L., et al. (2010). BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development, 137, 2989–3000.PubMedCrossRefGoogle Scholar
  53. 53.
    Campa, V. M., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183, 129–141.PubMedCrossRefGoogle Scholar
  54. 54.
    Collesi, C., Zentilin, L., Sinagra, G., & Giacca, M. (2008). Notch1 signaling stimulates proliferation of immature cardiomyocytes. The Journal of Cell Biology, 183, 117–128.PubMedCrossRefGoogle Scholar
  55. 55.
    Xu, Y., Shi, Y., & Ding, S. (2008). A chemical approach to stem-cell biology and regenerative medicine. Nature, 453, 338–344.PubMedCrossRefGoogle Scholar
  56. 56.
    Kattman, S. J., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228–240.PubMedCrossRefGoogle Scholar
  57. 57.
    Zeineddine, D., et al. (2006). Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Developmental Cell, 11, 535–546.PubMedCrossRefGoogle Scholar
  58. 58.
    Takahashi, T., et al. (2003). Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 107, 1912–1916.PubMedCrossRefGoogle Scholar
  59. 59.
    Sadek, H., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 6063–6068.PubMedCrossRefGoogle Scholar
  60. 60.
    Bushway, P. J., Mercola, M., & Price, J. H. (2008). A comparative analysis of standard microtiter plate reading versus imaging in cellular assays. Assay and Drug Development Technologies, 6, 557–567.PubMedCrossRefGoogle Scholar
  61. 61.
    Wu, X., Ding, S., Ding, Q., Gray, N. S., & Schultz, P. G. (2004). Small molecules that induce cardiomyogenesis in embryonic stem cells. Journal of the American Chemical Society, 126, 1590–1591.PubMedCrossRefGoogle Scholar
  62. 62.
    Wei, Z. L., et al. (2004). Isoxazolyl-serine-based agonists of peroxisome proliferator-activated receptor: design, synthesis, and effects on cardiomyocyte differentiation. Journal of the American Chemical Society, 126, 16714–16715.PubMedCrossRefGoogle Scholar
  63. 63.
    Dinsmore, J., et al. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplantation, 5, 131–143.PubMedCrossRefGoogle Scholar
  64. 64.
    De Tullio, M. C., & Arrigoni, O. (2004). Hopes, disillusions and more hopes from vitamin C. Cellular and Molecular Life Sciences, 61, 209–219.PubMedCrossRefGoogle Scholar
  65. 65.
    Bushway, P. J., & Mercola, M. (2006). High-throughput screening for modulators of stem cell differentiation. Methods in Enzymology, 414, 300–316.PubMedCrossRefGoogle Scholar
  66. 66.
    Frormann, S. & Jas, G (2002). Natural Products and Combinatorial Chemistry: the comeback of nature in drug discovery. Business Briefing Future Drug Discovery, 84–90.Google Scholar
  67. 67.
    Rishton, G. M. (2003). Nonleadlikeness and leadlikeness in biochemical screening. Drug Discovery Today, 8, 86–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Feher, M., & Schmidt, J. M. (2003). Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. Journal of Chemical Information and Computer Sciences, 43, 218–227.PubMedGoogle Scholar
  69. 69.
    Hann, M. M., Leach, A. R., & Harper, G. (2001). Molecular complexity and its impact on the probability of finding leads for drug discovery. Journal of Chemical Information and Computer Sciences, 41, 856–864.PubMedGoogle Scholar
  70. 70.
    Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie (International Ed. in English), 38, 3743–3748.CrossRefGoogle Scholar
  71. 71.
    Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66, 1022–1037.PubMedCrossRefGoogle Scholar
  72. 72.
    Gupta, S., Maurya, M. R., & Subramaniam, S. (2010). Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol, 6, e1000654.PubMedCrossRefGoogle Scholar
  73. 73.
    Pradervand, S., Maurya, M. R., & Subramaniam, S. (2006). Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biology, 7, R11.PubMedCrossRefGoogle Scholar
  74. 74.
    Brill, L. M., et al. (2009). Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell, 5, 204–213.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Hoof, D., et al. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 5, 214–226.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5, 100–107.PubMedCrossRefGoogle Scholar
  77. 77.
    Chi, X., et al. (2003). Expression of Nkx2-5-GFP bacterial artificial chromosome transgenic mice closely resembles endogenous Nkx2-5 gene activity. Genesis, 35, 220–226.PubMedCrossRefGoogle Scholar
  78. 78.
    Craig, P. N. (1971). Interdependence between physical parameters and selection of substituent groups for correlation studies. Journal of Medicinal Chemistry, 14, 680–684.PubMedCrossRefGoogle Scholar
  79. 79.
    Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26.PubMedCrossRefGoogle Scholar
  80. 80.
    Cashman, J. R., & MacDougall, J. M. (2005). Dynamic medicinal chemistry in the elaboration of morphine-6-glucuronide analogs. Current Topics in Medicinal Chemistry, 5, 585–594.PubMedCrossRefGoogle Scholar
  81. 81.
    Domian, I. J., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Erik Willems
    • 1
    • 3
  • Marion Lanier
    • 2
    • 3
  • Elvira Forte
    • 1
  • Frederick Lo
    • 1
    • 4
  • John Cashman
    • 2
    • 3
  • Mark Mercola
    • 1
    • 3
  1. 1.Sanford-Burnham Medical Research InstituteLa JollaUSA
  2. 2.Human BioMolecular Research InstituteSan DiegoUSA
  3. 3.ChemRegen Inc.San DiegoUSA
  4. 4.Department of BioengineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations