Resident Vascular Progenitor Cells—Diverse Origins, Phenotype, and Function

  • Peter J. Psaltis
  • Adriana Harbuzariu
  • Sinny Delacroix
  • Eric W. Holroyd
  • Robert D. SimariEmail author


The fundamental contributions that blood vessels make toward organogenesis and tissue homeostasis are reflected by the considerable ramifications that loss of vascular wall integrity has on pre- and postnatal health. During both neovascularization and vessel wall remodeling after insult, the dynamic nature of vascular cell growth and replacement vitiates traditional impressions that blood vessels contain predominantly mature, terminally differentiated cell populations. Recent discoveries have verified the presence of diverse stem/progenitor cells for both vascular and non-vascular progeny within the mural layers of the vasculature. During embryogenesis, this encompasses the emergence of definitive hematopoietic stem cells and multipotent mesoangioblasts from the developing dorsal aorta. Ancestral cells have also been identified and isolated from mature, adult blood vessels, showing variable capacity for endothelial, smooth muscle, and mesenchymal differentiation. At present, the characterization of these different vascular wall progenitors remains somewhat rudimentary, but there is evidence for their constitutive residence within organized compartments in the vessel wall, most compellingly in the tunica adventitia. This review overviews the spectrum of resident stem/progenitor cells that have been documented in macro- and micro-vessels during developmental and adult life and considers the implications for a local, vascular wall stem cell niche(s) in the pathogenesis and treatment of cardiovascular and other diseases.


Angiogenesis Vascular progenitor cells Endothelial progenitor cells Hematopoietic stem cells Mesenchymal stem cells Smooth muscle progenitor cells 



This work was supported by grant funding from the National Institutes of Health (HL75566). Dr Psaltis receives post-doctoral research funding from the National Health and Medical Research Council of Australia and the Royal Australasian College of Physicians. The authors have no conflicts to disclose.


  1. 1.
    Tavian, M., Zheng, B., Oberlin, E., Crisan, M., Sun, B., Huard, J., et al. (2005). The vascular wall as a source of stem cells. Annals of the New York Academy of Sciences, 1044, 41–50.PubMedGoogle Scholar
  2. 2.
    Carmeliet, P. (2003). Angiogenesis in health and disease. Natural Medicines, 9, 653–660.Google Scholar
  3. 3.
    Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801–809.PubMedGoogle Scholar
  4. 4.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedGoogle Scholar
  5. 5.
    Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105, 2783–2786.PubMedGoogle Scholar
  6. 6.
    Simper, D., Stalboerger, P. G., Panetta, C. J., Wang, S., & Caplice, N. M. (2002). Smooth muscle progenitor cells in human blood. Circulation, 106, 1199–1204.PubMedGoogle Scholar
  7. 7.
    Hu, Y., Zhang, Z., Torsney, E., Afzal, A. R., Davison, F., Metzler, B., et al. (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. Journal of Clinical Investigation, 113, 1258–1265.PubMedGoogle Scholar
  8. 8.
    Passman, J. N., Dong, X. R., Wu, S. P., Maguire, C. T., Hogan, K. A., Bautch, V. L., et al. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 9349–9354.PubMedGoogle Scholar
  9. 9.
    Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133, 1543–1551.PubMedGoogle Scholar
  10. 10.
    Tintut, Y., Alfonso, Z., Saini, T., Radcliff, K., Watson, K., Bostrom, K., et al. (2003). Multilineage potential of cells from the artery wall. Circulation, 108, 2505–2510.PubMedGoogle Scholar
  11. 11.
    Sabin, F. R. (1917). Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma, and red blood-cells as seen in the living chick. The Anatomical Record, 13, 199–204.Google Scholar
  12. 12.
    Murray, P. D. F. (1932). The development in vitro of blood of early chick embryo. Proceedings of the Royal Society of London Biological Sciences, 111, 497–521.Google Scholar
  13. 13.
    Ferguson, J. E., 3rd, Kelley, R. W., & Patterson, C. (2005). Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2246–2254.PubMedGoogle Scholar
  14. 14.
    Schmidt, A., Brixius, K., & Bloch, W. (2007). Endothelial precursor cell migration during vasculogenesis. Circulation Research, 101, 125–136.PubMedGoogle Scholar
  15. 15.
    Bertrand, J. Y., Chi, N. C., Santoso, B., Teng, S., Stainier, D. Y., & Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 464, 108–111.PubMedGoogle Scholar
  16. 16.
    Kissa, K., & Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 464, 112–115.PubMedGoogle Scholar
  17. 17.
    Jaffredo, T., Gautier, R., Eichmann, A., & Dieterlen-Lievre, F. (1998). Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development, 125, 4575–4583.PubMedGoogle Scholar
  18. 18.
    Ciau-Uitz, A., Walmsley, M., & Patient, R. (2000). Distinct origins of adult and embryonic blood in Xenopus. Cell, 102, 787–796.PubMedGoogle Scholar
  19. 19.
    Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86, 897–906.PubMedGoogle Scholar
  20. 20.
    Zovein, A. C., Hofmann, J. J., Lynch, M., French, W. J., Turlo, K. A., Yang, Y., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell, 3, 625–636.PubMedGoogle Scholar
  21. 21.
    Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891.PubMedGoogle Scholar
  22. 22.
    Boisset, J. C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., & Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 464, 116–120.PubMedGoogle Scholar
  23. 23.
    Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunology, 9, 129–136.PubMedGoogle Scholar
  24. 24.
    Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.PubMedGoogle Scholar
  25. 25.
    Vogeli, K. M., Jin, S. W., Martin, G. R., & Stainier, D. Y. (2006). A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature, 443, 337–339.PubMedGoogle Scholar
  26. 26.
    Eilken, H. M., Nishikawa, S., & Schroeder, T. (2009). Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature, 457, 896–900.PubMedGoogle Scholar
  27. 27.
    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., & Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development, 125, 725–732.PubMedGoogle Scholar
  28. 28.
    Kennedy, M., D’Souza, S. L., Lynch-Kattman, M., Schwantz, S., & Keller, G. (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109, 2679–2687.PubMedGoogle Scholar
  29. 29.
    Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., et al. (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100, 458–466.PubMedGoogle Scholar
  30. 30.
    Robertson, S. M., Kennedy, M., Shannon, J. M., & Keller, G. (2000). A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development, 127, 2447–2459.PubMedGoogle Scholar
  31. 31.
    Fehling, H. J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G., et al. (2003). Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development, 130, 4217–4227.PubMedGoogle Scholar
  32. 32.
    Zambidis, E. T., Park, T. S., Yu, W., Tam, A., Levine, M., Yuan, X., et al. (2008). Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood, 112, 3601–3614.PubMedGoogle Scholar
  33. 33.
    Bailey, A. S., Jiang, S., Afentoulis, M., Baumann, C. I., Schroeder, D. A., Olson, S. B., et al. (2004). Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood, 103, 13–19.PubMedGoogle Scholar
  34. 34.
    Niwa, A., Umeda, K., Chang, H., Saito, M., Okita, K., Takahashi, K., et al. (2009). Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemoangiogenic progenitors. Journal of Cellular Physiology, 221, 367–377.PubMedGoogle Scholar
  35. 35.
    Cossu, G., & Bianco, P. (2003). Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Current Opinion in Genetics & Development, 13, 537–542.Google Scholar
  36. 36.
    Minasi, M. G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., et al. (2002). The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 129, 2773–2783.PubMedGoogle Scholar
  37. 37.
    Le Lievre, C. S., & Le Douarin, N. M. (1975). Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Journal of Embryology and Experimental Morphology, 34, 125–154.PubMedGoogle Scholar
  38. 38.
    Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cardiac neural crest. Development, 127, 1607–1616.PubMedGoogle Scholar
  39. 39.
    Wada, A. M., Willet, S. G., & Bader, D. (2003). Coronary vessel development: a unique form of vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 2138–2145.PubMedGoogle Scholar
  40. 40.
    Hungerford, J. E., Owens, G. K., Argraves, W. S., & Little, C. D. (1996). Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Developmental Biology, 178, 375–392.PubMedGoogle Scholar
  41. 41.
    Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367.PubMedGoogle Scholar
  42. 42.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7, 430–436.Google Scholar
  43. 43.
    Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.PubMedGoogle Scholar
  44. 44.
    Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation, 115, 3165–3172.PubMedGoogle Scholar
  45. 45.
    Schwartz, S. M., & Benditt, E. P. (1977). Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circulation Research, 41, 248–255.PubMedGoogle Scholar
  46. 46.
    Schwartz, S. M., & Benditt, E. P. (1976). Clustering of replicating cells in aortic endothelium. Proceedings of the National Academy of Sciences of the United States of America, 73, 651–653.PubMedGoogle Scholar
  47. 47.
    Nolan, D. J., Ciarrocchi, A., Mellick, A. S., Jaggi, J. S., Bambino, K., Gupta, S., et al. (2007). Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & Development, 21, 1546–1558.Google Scholar
  48. 48.
    Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–228.PubMedGoogle Scholar
  49. 49.
    Yoon, C. H., Hur, J., Park, K. W., Kim, J. H., Lee, C. S., Oh, I. Y., et al. (2005). Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation, 112, 1618–1627.PubMedGoogle Scholar
  50. 50.
    Werner, N., Junk, S., Laufs, U., Link, A., Walenta, K., Bohm, M., et al. (2003). Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circulation Research, 93, e17–e24.PubMedGoogle Scholar
  51. 51.
    Timmermans, F., Plum, J., Yoder, M. C., Ingram, D. A., Vandekerckhove, B., & Case, J. (2009). Endothelial progenitor cells: identity defined? Journal of Cellular and Molecular Medicine, 13, 87–102.PubMedGoogle Scholar
  52. 52.
    Gulati, R., Jevremovic, D., Peterson, T. E., Chatterjee, S., Shah, V., Vile, R. G., et al. (2003). Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circulation Research, 93, 1023–1025.PubMedGoogle Scholar
  53. 53.
    Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348, 593–600.PubMedGoogle Scholar
  54. 54.
    Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104, 2752–2760.PubMedGoogle Scholar
  55. 55.
    Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.PubMedGoogle Scholar
  56. 56.
    Chakroborty, D., Chowdhury, U. R., Sarkar, C., Baral, R., Dasgupta, P. S., & Basu, S. (2008). Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. Journal of Clinical Investigation, 118, 1380–1389.PubMedGoogle Scholar
  57. 57.
    Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., et al. (2007). Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35, 1109–1118.PubMedGoogle Scholar
  58. 58.
    Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109, 1801–1809.PubMedGoogle Scholar
  59. 59.
    Rohde, E., Bartmann, C., Schallmoser, K., Reinisch, A., Lanzer, G., Linkesch, W., et al. (2007). Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells, 25, 1746–1752.PubMedGoogle Scholar
  60. 60.
    Rehman, J., Li, J., Orschell, C. M., & March, K. L. (2003). Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 107, 1164–1169.PubMedGoogle Scholar
  61. 61.
    Guven, H., Shepherd, R. M., Bach, R. G., Capoccia, B. J., & Link, D. C. (2006). The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. Journal of the American College of Cardiology, 48, 1579–1587.PubMedGoogle Scholar
  62. 62.
    Hu, Y., Davison, F., Zhang, Z., & Xu, Q. (2003). Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation, 108, 3122–3127.PubMedGoogle Scholar
  63. 63.
    Perry, T. E., Song, M., Despres, D. J., Kim, S. M., San, H., Yu, Z. X., et al. (2009). Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovascular Research, 84, 317–325.PubMedGoogle Scholar
  64. 64.
    Hillebrands, J. L., Klatter, F. A., van Dijk, W. D., & Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Natural Medicines, 8, 194–195.Google Scholar
  65. 65.
    Gothert, J. R., Gustin, S. E., van Eekelen, J. A., Schmidt, U., Hall, M. A., Jane, S. M., et al. (2004). Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood, 104, 1769–1777.PubMedGoogle Scholar
  66. 66.
    Majka, S. M., Jackson, K. A., Kienstra, K. A., Majesky, M. W., Goodell, M. A., & Hirschi, K. K. (2003). Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. Journal of Clinical Investigation, 111, 71–79.PubMedGoogle Scholar
  67. 67.
    Grenier, G., Scime, A., Le Grand, F., Asakura, A., Perez-Iratxeta, C., Andrade-Navarro, M. A., et al. (2007). Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells, 25, 3101–3110.PubMedGoogle Scholar
  68. 68.
    Aicher, A., Rentsch, M., Sasaki, K., Ellwart, J. W., Fandrich, F., Siebert, R., et al. (2007). Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circulation Research, 100, 581–589.PubMedGoogle Scholar
  69. 69.
    Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 106, 15885–15890.PubMedGoogle Scholar
  70. 70.
    Alessandri, G., Girelli, M., Taccagni, G., Colombo, A., Nicosia, R., Caruso, A., et al. (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Laboratory Investigation, 81, 875–885.PubMedGoogle Scholar
  71. 71.
    Invernici, G., Emanueli, C., Madeddu, P., Cristini, S., Gadau, S., Benetti, A., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. The American Journal of Pathology, 170, 1879–1892.PubMedGoogle Scholar
  72. 72.
    Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Natural Medicines, 8, 403–409.Google Scholar
  73. 73.
    Kumar, A. H., Metharom, P., Schmeckpeper, J., Weiss, S., Martin, K., & Caplice, N. M. (2010). Bone marrow-derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction. The FASEB Journal, 24, 81–92.PubMedGoogle Scholar
  74. 74.
    Sainz, J., Al Haj Zen, A., Caligiuri, G., Demerens, C., Urbain, D., Lemitre, M., et al. (2006). Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 281–286.PubMedGoogle Scholar
  75. 75.
    Li, G., Chen, S. J., Oparil, S., Chen, Y. F., & Thompson, J. A. (2000). Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation, 101, 1362–1365.PubMedGoogle Scholar
  76. 76.
    Frid, M. G., Kale, V. A., & Stenmark, K. R. (2002). Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circulation Research, 90, 1189–1196.PubMedGoogle Scholar
  77. 77.
    Shimizu, K., Sugiyama, S., Aikawa, M., Fukumoto, Y., Rabkin, E., Libby, P., et al. (2001). Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Natural Medicines, 7, 738–741.Google Scholar
  78. 78.
    Hu, Y., Davison, F., Ludewig, B., Erdel, M., Mayr, M., Url, M., et al. (2002). Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation, 106, 1834–1839.PubMedGoogle Scholar
  79. 79.
    Caplice, N. M., Bunch, T. J., Stalboerger, P. G., Wang, S., Simper, D., Miller, D. V., et al. (2003). Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 100, 4754–4759.PubMedGoogle Scholar
  80. 80.
    Deb, A., Skelding, K. A., Wang, S., Reeder, M., Simper, D., & Caplice, N. M. (2004). Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation, 110, 2673–2677.PubMedGoogle Scholar
  81. 81.
    Sugiyama, S., Kugiyama, K., Nakamura, S., Kataoka, K., Aikawa, M., Shimizu, K., et al. (2006). Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis, 187, 351–362.PubMedGoogle Scholar
  82. 82.
    Bentzon, J. F., Sondergaard, C. S., Kassem, M., & Falk, E. (2007). Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation, 116, 2053–2061.PubMedGoogle Scholar
  83. 83.
    Rodriguez-Menocal, L., St-Pierre, M., Wei, Y., Khan, S., Mateu, D., Calfa, M., et al. (2009). The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovascular Research, 81, 46–53.PubMedGoogle Scholar
  84. 84.
    De Leon, H., Ollerenshaw, J. D., Griendling, K. K., & Wilcox, J. N. (2001). Adventitial cells do not contribute to neointimal mass after balloon angioplasty of the rat common carotid artery. Circulation, 104, 1591–1593.PubMedGoogle Scholar
  85. 85.
    Pasquinelli, G., Tazzari, P. L., Vaselli, C., Foroni, L., Buzzi, M., Storci, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25, 1627–1634.PubMedGoogle Scholar
  86. 86.
    Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Krankel, N., Katare, R., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.PubMedGoogle Scholar
  87. 87.
    Torsney, E., Mandal, K., Halliday, A., Jahangiri, M., & Xu, Q. (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191, 259–264.PubMedGoogle Scholar
  88. 88.
    Majesky, M. W. (2007). Developmental basis of vascular smooth muscle diversity. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1248–1258.PubMedGoogle Scholar
  89. 89.
    Collett, G. D., & Canfield, A. E. (2005). Angiogenesis and pericytes in the initiation of ectopic calcification. Circulation Research, 96, 930–938.PubMedGoogle Scholar
  90. 90.
    Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26, 2201–2210.PubMedGoogle Scholar
  91. 91.
    Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.PubMedGoogle Scholar
  92. 92.
    Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.PubMedGoogle Scholar
  93. 93.
    Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedGoogle Scholar
  94. 94.
    Schwab, K. E., & Gargett, C. E. (2007). Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Human Reproduction, 22, 2903–2911.PubMedGoogle Scholar
  95. 95.
    Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.PubMedGoogle Scholar
  96. 96.
    Zannettino, A. C., Paton, S., Arthur, A., Khor, F., Itescu, S., Gimble, J. M., et al. (2008). Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology, 214, 413–421.PubMedGoogle Scholar
  97. 97.
    Peault, B., Rudnicki, M., Torrente, Y., Cossu, G., Tremblay, J. P., Partridge, T., et al. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Molecular Therapy, 15, 867–877.PubMedGoogle Scholar
  98. 98.
    Dore-Duffy, P., Katychev, A., Wang, X., & Van Buren, E. (2006). CNS microvascular pericytes exhibit multipotential stem cell activity. Journal of Cerebral Blood Flow and Metabolism, 26, 613–624.PubMedGoogle Scholar
  99. 99.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.PubMedGoogle Scholar
  100. 100.
    Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102, 77–85.PubMedGoogle Scholar
  101. 101.
    da Silva, M. L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.Google Scholar
  102. 102.
    Andreeva, E. R., Pugach, I. M., Gordon, D., & Orekhov, A. N. (1998). Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue & Cell, 30, 127–135.Google Scholar
  103. 103.
    Howson, K. M., Aplin, A. C., Gelati, M., Alessandri, G., Parati, E. A., & Nicosia, R. F. (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. American Journal of Physiology. Cell Physiology, 289, C1396–C1407.PubMedGoogle Scholar
  104. 104.
    Covas, D. T., Piccinato, C. E., Orellana, M. D., Siufi, J. L., Silva, W. A., Jr., Proto-Siqueira, R., et al. (2005). Mesenchymal stem cells can be obtained from the human saphena vein. Experimental Cell Research, 309, 340–344.PubMedGoogle Scholar
  105. 105.
    Hoshino, A., Chiba, H., Nagai, K., Ishii, G., & Ochiai, A. (2008). Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochemical and Biophysical Research Communications, 368, 305–310.PubMedGoogle Scholar
  106. 106.
    Pasquinelli, G., Pacilli, A., Alviano, F., Foroni, L., Ricci, F., Valente, S., et al. (2010). Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy, 12, 275–287.PubMedGoogle Scholar
  107. 107.
    Shao, J. S., Cai, J., & Towler, D. A. (2006). Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1423–1430.PubMedGoogle Scholar
  108. 108.
    Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., & Schaper, W. (1998). Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. Journal of Clinical Investigation, 101, 40–50.PubMedGoogle Scholar
  109. 109.
    Soehnlein, O., & Weber, C. (2009). Myeloid cells in atherosclerosis: initiators and decision shapers. Seminars in Immunopathology, 31, 35–47.PubMedGoogle Scholar
  110. 110.
    Lessner, S. M., Prado, H. L., Waller, E. K., & Galis, Z. S. (2002). Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. The American Journal of Pathology, 160, 2145–2155.PubMedGoogle Scholar
  111. 111.
    Khmelewski, E., Becker, A., Meinertz, T., & Ito, W. D. (2004). Tissue resident cells play a dominant role in arteriogenesis and concomitant macrophage accumulation. Circulation Research, 95, E56–E64.PubMedGoogle Scholar
  112. 112.
    Miyata, K., Shimokawa, H., Kandabashi, T., Higo, T., Morishige, K., Eto, Y., et al. (2000). Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2351–2358.PubMedGoogle Scholar
  113. 113.
    Bot, I., de Jager, S. C., Bot, M., van Heiningen, S. H., de Groot, P., Veldhuizen, R. W., et al. (2010). The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circulation Research, 106, 89–92.PubMedGoogle Scholar
  114. 114.
    Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E. A., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131, 994–1008.PubMedGoogle Scholar
  115. 115.
    Garrett, R. W., & Emerson, S. G. (2009). Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell, 4, 503–506.PubMedGoogle Scholar
  116. 116.
    Greco, V., & Guo, S. (2010). Compartmentalized organization: a common and required feature of stem cell niches? Development, 137, 1586–1594.PubMedGoogle Scholar
  117. 117.
    Haimovici, H., & Maier, N. (1964). Fate of aortic homografts in canine atherosclerosis. 3. Study of fresh abdominal and thoracic aortic implants into thoracic aorta: role of tissue susceptibility in atherogenesis. Archives of Surgery, 89, 961–969.PubMedGoogle Scholar
  118. 118.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.PubMedGoogle Scholar
  119. 119.
    Kirton, J. P., & Xu, Q. (2010). Endothelial precursors in vascular repair. Microvascular Research, 79, 193–199.PubMedGoogle Scholar
  120. 120.
    Laird, D. J., von Andrian, U. H., & Wagers, A. J. (2008). Stem cell trafficking in tissue development, growth, and disease. Cell, 132, 612–630.PubMedGoogle Scholar
  121. 121.
    Zernecke, A., Schober, A., Bot, I., von Hundelshausen, P., Liehn, E. A., Mopps, B., et al. (2005). SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circulation Research, 96, 784–791.PubMedGoogle Scholar
  122. 122.
    Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., et al. (2006). VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 124, 175–189.PubMedGoogle Scholar
  123. 123.
    Leone, A. M., Valgimigli, M., Giannico, M. B., Zaccone, V., Perfetti, M., D’Amario, D., et al. (2009). From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. European Heart Journal, 30, 890–899.PubMedGoogle Scholar
  124. 124.
    Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.PubMedGoogle Scholar
  125. 125.
    Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89, E1–E7.PubMedGoogle Scholar
  126. 126.
    Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353, 999–1007.PubMedGoogle Scholar
  127. 127.
    George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. European Heart Journal, 25, 1003–1008.PubMedGoogle Scholar
  128. 128.
    Thum, T., Tsikas, D., Stein, S., Schultheiss, M., Eigenthaler, M., Anker, S. D., et al. (2005). Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. Journal of the American College of Cardiology, 46, 1693–1701.PubMedGoogle Scholar
  129. 129.
    Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987.PubMedGoogle Scholar
  130. 130.
    Leone, A. M., Rutella, S., Bonanno, G., Abbate, A., Rebuzzi, A. G., Giovannini, S., et al. (2005). Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. European Heart Journal, 26, 1196–1204.PubMedGoogle Scholar
  131. 131.
    Michowitz, Y., Goldstein, E., Wexler, D., Sheps, D., Keren, G., & George, J. (2007). Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart, 93, 1046–1050.PubMedGoogle Scholar
  132. 132.
    Bonello, L., Basire, A., Sabatier, F., Paganelli, F., & Dignat-George, F. (2006). Endothelial injury induced by coronary angioplasty triggers mobilization of endothelial progenitor cells in patients with stable coronary artery disease. Journal of Thrombosis and Haemostasis, 4, 979–981.PubMedGoogle Scholar
  133. 133.
    Banerjee, S., Brilakis, E., Zhang, S., Roesle, M., Lindsey, J., Philips, B., et al. (2006). Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis, 189, 70–75.PubMedGoogle Scholar
  134. 134.
    Padfield, G. J., Newby, D. E., & Mills, N. L. (2010). Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology, 55, 1553–1565.PubMedGoogle Scholar
  135. 135.
    Gulati, R., Jevremovic, D., Witt, T. A., Kleppe, L. S., Vile, R. G., Lerman, A., et al. (2004). Modulation of the vascular response to injury by autologous blood-derived outgrowth endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 287, H512–H517.PubMedGoogle Scholar
  136. 136.
    Aoki, J., Serruys, P. W., van Beusekom, H., Ong, A. T., McFadden, E. P., Sianos, G., et al. (2005). Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology, 45, 1574–1579.PubMedGoogle Scholar
  137. 137.
    George, J., Afek, A., Abashidze, A., Shmilovich, H., Deutsch, V., Kopolovich, J., et al. (2005). Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2636–2641.PubMedGoogle Scholar
  138. 138.
    Zoll, J., Fontaine, V., Gourdy, P., Barateau, V., Vilar, J., Leroyer, A., et al. (2008). Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovascular Research, 77, 471–480.PubMedGoogle Scholar
  139. 139.
    Bentzon, J. F., Weile, C., Sondergaard, C. S., Hindkjaer, J., Kassem, M., & Falk, E. (2006). Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2696–2702.PubMedGoogle Scholar
  140. 140.
    Tanaka, K., Sata, M., Hirata, Y., & Nagai, R. (2003). Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circulation Research, 93, 783–790.PubMedGoogle Scholar
  141. 141.
    Zalewski, A., Shi, Y., & Johnson, A. G. (2002). Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circulation Research, 91, 652–655.PubMedGoogle Scholar
  142. 142.
    Mayr, M., Zampetaki, A., Sidibe, A., Mayr, U., Yin, X., De Souza, A. I., et al. (2008). Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circulation Research, 102, 1046–1056.PubMedGoogle Scholar
  143. 143.
    Perlman, H., Maillard, L., Krasinski, K., & Walsh, K. (1997). Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation, 95, 981–987.PubMedGoogle Scholar
  144. 144.
    Barker, S. G., Tilling, L. C., Miller, G. C., Beesley, J. E., Fleetwood, G., Stavri, G. T., et al. (1994). The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a ‘neoadventitia’. Atherosclerosis, 105, 131–144.PubMedGoogle Scholar
  145. 145.
    Langheinrich, A. C., Michniewicz, A., Sedding, D. G., Walker, G., Beighley, P. E., Rau, W. S., et al. (2006). Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 347–352.PubMedGoogle Scholar
  146. 146.
    He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31, 8235–8244.PubMedGoogle Scholar
  147. 147.
    Siow, R. C., & Churchman, A. T. (2007). Adventitial growth factor signalling and vascular remodelling: potential of perivascular gene transfer from the outside-in. Cardiovascular Research, 75, 659–668.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peter J. Psaltis
    • 1
  • Adriana Harbuzariu
    • 1
  • Sinny Delacroix
    • 1
  • Eric W. Holroyd
    • 1
  • Robert D. Simari
    • 1
    Email author
  1. 1.Division of Cardiovascular DiseasesMayo ClinicRochesterUSA

Personalised recommendations