Stem Cell Update: Highlights from the 2010 Lugano Stem Cell Meeting

  • Silvana BardelliEmail author
  • Giuseppe Astori
  • Daniel Sürder
  • Tiziano Tallone
  • Andre Terzic
  • Gianni Soldati
  • Tiziano Moccetti


The 2010 edition of the Lugano Stem Cell Meeting, under the auspices of the Swiss center of excellence in cardiovascular diseases “Cardiocentro Ticino” and the Swiss Stem Cell Foundation, offered an update on clinical, translational, and biotechnological advances in regenerative science and medicine pertinent to cardiovascular applications. Highlights from the international forum ranged from innate mechanisms of heart repair, safety, and efficacy of ongoing and completed clinical trials, novel generations of stem cell biologics, bioengineered platforms, and regulatory processes. In the emerging era of regenerative medicine, accelerating the critical path from discovery to product development will require integrated multidisciplinary teams to ensure timely translation of new knowledge into validated algorithms for practice adoption.


Regenerative medicine Biotechnology Heart failure Disease Translation Clinical trials Mesenchymal stem cells Induced pluripotent stem cells 



The authors wish to thank the Cardiocentro Ticino Congress Committee, namely Mrs. Annapaola Sürder-Boschet, Mrs. Rosi Parillo, and Mr. Alessandro Tomei, for their excellent professional support and their warm and collaborative attitude in the challenging organization of the meeting.


  1. 1.
    Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., & Naldini, L. (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics, 25(2), 217–222.PubMedCrossRefGoogle Scholar
  2. 2.
    Biffi, A., Capotondo, A., Fasano, S., del Carro, U., Marchesini, S., Azuma, H., et al. (2006). Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. Journal of Clinical Investigation, 116(11), 3070–3082.PubMedCrossRefGoogle Scholar
  3. 3.
    Capotondo, A., Cesani, M., Pepe, S., Fasano, S., Gregori, S., Tononi, L., et al. (2007). Safety of arylsulfatase A overexpression for gene therapy of metachromatic leukodystrophy. Human Gene Therapy, 18(9), 821–836.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanz-Ruiz, R., Fernández-Santos, E., Domínguez-Muñoa, M., Parma, R., Villa, A., Fernández, L., et al. (2009). Early translation of adipose-derived cell therapy for cardiovascular disease. Cell Transplantation, 18(3), 245–254.PubMedCrossRefGoogle Scholar
  5. 5.
    Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.PubMedCrossRefGoogle Scholar
  6. 6.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.PubMedCrossRefGoogle Scholar
  7. 7.
    Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99(5), 1285–1297.PubMedCrossRefGoogle Scholar
  8. 8.
    Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294–1301.PubMedCrossRefGoogle Scholar
  9. 9.
    Bai, X., Yan, Y., Song, Y. H., Seidensticker, M., Rabinovich, B., Metzele, R., et al. (2010). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 31(4), 489–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Sánchez, P. L., Sanz-Ruiz, R., Fernández-Santos, M. E., & Fernández-Avilés, F. (2010). Cultured and freshly isolated adipose tissue-derived cells: Fat years for cardiac stem cell therapy. European Heart Journal, 31(4), 394–397.PubMedCrossRefGoogle Scholar
  11. 11.
    Astori, G., Vignati, F., Bardelli, S., Tubio, M., Gola, M., Albertini, V., et al. (2007). “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 5, 55.PubMedCrossRefGoogle Scholar
  12. 12.
    Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal Haematology, 109(1), 235–242.CrossRefGoogle Scholar
  13. 13.
    Morigi, M., Rota, C., Montemurro, T., Montelatici, E., Lo Cicero, V., Imberti, B., et al. (2010). Life-sparing effect of human cord blood–mesenchymal stem cells in experimental acute kidney injury. Stem Cells, 28(3), 513–522.PubMedGoogle Scholar
  14. 14.
    Bardelli, S. (2010). Stem cell biobanks. J Cardiovasc Trans Res, 3, 128–134.CrossRefGoogle Scholar
  15. 15.
    Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.PubMedCrossRefGoogle Scholar
  16. 16.
    Hosoda, T., D’Amario, D., Cabral-Da-Silva, M. C., Zheng, H., Padin-Iruegas, M. E., Ogorek, B., et al. (2009). Clonality of mouse and human cardiomyogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 17169–17174.PubMedCrossRefGoogle Scholar
  17. 17.
    D’Alessandro, D. A., Kajstura, J., Hosoda, T., Gatti, A., Bello, R., Mosna, F., et al. (2009). Progenitor cells from the explanted heart generate immunocompatible myocardium within the transplanted donor heart. Circulation Research, 105(11), 1128–1140.PubMedCrossRefGoogle Scholar
  18. 18.
    Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogórek, B., et al. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107(2), 305–315.PubMedCrossRefGoogle Scholar
  19. 19.
    Rubart, M., & Field, L. J. (2006). Cardiac regeneration: Repopulating the heart. Annual Review of Physiology, 68, 29–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Urbanek, K., Cabral-da-Silva, M. C., Ide-Iwata, N., Maestroni, S., Delucchi, F., Zheng, H., et al. (2010). Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circulation Research, 107(3), 429–441.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews. Molecular Cell Biology, 8(9), 703–713.PubMedCrossRefGoogle Scholar
  22. 22.
    Urbanek, K., Torella, D., Sheikh, F., De Angelis, A., Nurzynska, D., Silvestri, F., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8692–8697.PubMedCrossRefGoogle Scholar
  23. 23.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.PubMedCrossRefGoogle Scholar
  24. 24.
    Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94(5), 678–685.PubMedCrossRefGoogle Scholar
  25. 25.
    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedCrossRefGoogle Scholar
  26. 26.
    Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A. P., Kränkel, N., Katare, R., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15), 1735–1745.PubMedCrossRefGoogle Scholar
  27. 27.
    Tzakis, A. G., Ricordi, C., Alejandro, R., Zeng, Y., Fung, J. J., Todo, S., et al. (1990). Pancreatic islet transplantation after upper abdominal exenteration and liver replacement. Lancet, 336(8712), 402–405.PubMedCrossRefGoogle Scholar
  28. 28.
    Jindal, R. M., Ricordi, C., & Shriver, C. D. (2010). Autologous pancreatic islet transplantation for severe trauma. The New England Journal of Medicine, 362(16), 1550.PubMedCrossRefGoogle Scholar
  29. 29.
    Tremolada, C., Palmieri, G., Ricordi, C. (2010). Adipocyte transplantation and stem cells: Plastic surgery meets regenerative medicine. Cell Transplantation, in press.Google Scholar
  30. 30.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.PubMedCrossRefGoogle Scholar
  31. 31.
    Tongers, J., Roncalli, J. G., & Losordo, D. W. (2008). Therapeutic angiogenesis for critical limb ischemia: Microvascular therapies coming of age. Circulation, 118(1), 9–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: A phase I/IIa double-blind, randomized controlled trial. Circulation, 115(25), 3165–3172.PubMedCrossRefGoogle Scholar
  33. 33.
    Kränkel, N., Katare, R. G., Siragusa, M., Barcelos, L. S., Campagnolo, P., Mangialardi, G., et al. (2008). Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circulation Research, 103(11), 1335–1343.PubMedCrossRefGoogle Scholar
  34. 34.
    Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45(4), 530–544.PubMedCrossRefGoogle Scholar
  35. 35.
    Nelson, T. J., & Terzic, A. (2009). Induced pluripotent stem cells: Reprogrammed without a trace. Regenerative Medicine, 4(3), 333–335.PubMedCrossRefGoogle Scholar
  36. 36.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.PubMedCrossRefGoogle Scholar
  37. 37.
    Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y., & Terzic, A. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Trans Res, 3(1), 13–23.CrossRefGoogle Scholar
  38. 38.
    Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105(7), 648–656.PubMedCrossRefGoogle Scholar
  39. 39.
    Bartunek, J., Croissant, J. D., Wijns, W., Gofflot, S., de Lavareille, A., Vanderheyden, M., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H1095–H1104.PubMedCrossRefGoogle Scholar
  40. 40.
    Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. The Journal of Experimental Medicine, 204(2), 405–420.PubMedCrossRefGoogle Scholar
  41. 41.
    Behfar, A., Yamada, S., Crespo-Diaz, R., Nesbitt, J. J., Rowe, L. A., Perez-Terzic, C., et al. (2010). Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. Journal of the American College of Cardiology, 56(9), 721–734.PubMedCrossRefGoogle Scholar
  42. 42.
    Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667–2677.PubMedCrossRefGoogle Scholar
  43. 43.
    Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111(2), 150–156.PubMedCrossRefGoogle Scholar
  44. 44.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167(10), 989–997.PubMedCrossRefGoogle Scholar
  45. 45.
    Levy, W. C., Mozaffarian, D., Linker, D. T., Sutradhar, S. C., Anker, S. D., Cropp, A. B., et al. (2006). The Seattle Heart Failure Model: Prediction of survival in heart failure. Circulation, 113(11), 1424–1433.PubMedCrossRefGoogle Scholar
  46. 46.
    Petrini, M., Pacini, S., Trombi, L., Fazzi, R., Montali, M., Ikehara, S., et al. (2009). Identification and purification of mesodermal progenitor cells from human adult bone marrow. Stem Cells and Development, 18(6), 857–866.PubMedCrossRefGoogle Scholar
  47. 47.
    Terzic, A., & Nelson, T. J. (2010). Regenerative medicine advancing health care 2020. Journal of the American College of Cardiology, 55(20), 2254–2257.PubMedCrossRefGoogle Scholar
  48. 48.
    Nelson, T. J., Behfar, A., & Terzic, A. (2008). Strategies for therapeutic repair: The “R (3)” regenerative medicine paradigm. Clin Transl Sci, 1(2), 168–171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Silvana Bardelli
    • 1
    Email author
  • Giuseppe Astori
    • 2
  • Daniel Sürder
    • 2
  • Tiziano Tallone
    • 1
  • Andre Terzic
    • 3
  • Gianni Soldati
    • 1
  • Tiziano Moccetti
    • 2
  1. 1.Swiss Stem Cell FoundationLuganoSwitzerland
  2. 2.Cardiocentro TicinoLuganoSwitzerland
  3. 3.Mayo ClinicRochesterUSA

Personalised recommendations