MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases

  • Julianna K. Edwards
  • Renata Pasqualini
  • Wadih Arap
  • George A. Calin


MicroRNAs (miRNAs), approximately 19–25 nucleotides in length, are posttranscriptional regulators of protein expression that target and inhibit translation of messenger (m) RNAs. Recent research on miRNAs has produced a plethora of new material on the role of miRNAs in disease. Deregulation or ablation of miRNA expression has led to major pathologies including heart disease and cancer. Signatures of differential miRNA expression have been uncovered for nearly every disease. Recent research has focused on exploitation of the selectivity of these signatures as markers of disease and for therapeutic applications. The significance of additional mechanisms of abnormal posttranscriptional regulation, such as ultraconserved genes (UCGs), has recently been recognized. This review focuses on the identification of aberrant posttranscriptional regulators (miRNAs and UCGs) in cancer and cardiovascular disease and addresses the applications of this work towards diagnosis and therapy.


MicroRNA Ultraconserved Gene Diagnosis Therapy 


  1. 1.
    Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang, Y., Liang, Y., & Lu, Q. (2008). MicroRNA epigenetic alterations: Predicting biomarkers and therapeutic targets in human diseases. Clinical Genetics, 74(4), 307–315.CrossRefPubMedGoogle Scholar
  3. 3.
    Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.CrossRefGoogle Scholar
  4. 4.
    Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Hutvágner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297(5589), 2056–2060.CrossRefPubMedGoogle Scholar
  6. 6.
    Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., et al. (2004). Ultraconserved elements in the human genome. Science, 304(5675), 1321–1325.CrossRefPubMedGoogle Scholar
  7. 7.
    Mattick, J. S. (2009). The genetic signatures of noncoding RNAs. PLoS Genet, 5(4), e1000459.CrossRefPubMedGoogle Scholar
  8. 8.
    Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.CrossRefPubMedGoogle Scholar
  9. 9.
    Strong, K., Mathers, C., Leeder, S., & Beaglehole, R. (2005). Preventing chronic diseases: How many lives can we save? Lancet, 366(9496), 1578–1582.CrossRefPubMedGoogle Scholar
  10. 10.
    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V., Rosamond, W., Sacco, R, Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D., Wylie-Rosett, J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2009) Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation.Google Scholar
  11. 11.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57(1), 43–66.CrossRefGoogle Scholar
  12. 12.
    Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2111–2116.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.CrossRefPubMedGoogle Scholar
  14. 14.
    Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.CrossRefPubMedGoogle Scholar
  15. 15.
    van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.CrossRefPubMedGoogle Scholar
  16. 16.
    Hunter, J. J., & Chien, K. R. (1999). Signaling pathways for cardiac hypertrophy and failure. New England Journal of Medicine, 341(17), 1276–1283.CrossRefPubMedGoogle Scholar
  17. 17.
    Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMedGoogle Scholar
  18. 18.
    Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(Pt 17), 3045–3052.CrossRefPubMedGoogle Scholar
  20. 20.
    Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., et al. (2007). MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. Journal of Biological Chemistry, 282(17), 12363–12367.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.CrossRefPubMedGoogle Scholar
  22. 22.
    Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26(19), 2799–2803.CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMedGoogle Scholar
  24. 24.
    Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMedGoogle Scholar
  25. 25.
    Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.CrossRefPubMedGoogle Scholar
  26. 26.
    Calin, G. A., & Croce, C. M. (2009). Chronic lymphocytic leukemia: Interplay between noncoding RNAs and protein-coding genes. Blood, 114(23), 4761–4770.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu, C. G., Spizzo, R., Calin, G. A., & Croce, C. M. (2008). Expression profiling of microRNA using oligo DNA arrays. Methods, 44(1), 22–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.CrossRefPubMedGoogle Scholar
  29. 29.
    Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature ReviewsCancer, 6(11), 857–866.CrossRefGoogle Scholar
  30. 30.
    Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs-microRNAs with a role in cancer. Nature ReviewsCancer, 6(4), 259–269.CrossRefGoogle Scholar
  31. 31.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMedGoogle Scholar
  32. 32.
    Aqeilan, R. I., Calin, G. A., & Croce, C. M. (2010). miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death and Differentiation, 17(2), 215–220.CrossRefPubMedGoogle Scholar
  33. 33.
    Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—The micro steering wheel of tumour metastases. Nature ReviewsCancer, 9(4), 293–302.CrossRefGoogle Scholar
  34. 34.
    Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.CrossRefPubMedGoogle Scholar
  35. 35.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMedGoogle Scholar
  36. 36.
    Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMedGoogle Scholar
  38. 38.
    Eccles, S. A., & Welch, D. R. (2007). Metastasis: Recent discoveries and novel treatment strategies. Lancet, 369(9574), 1742–1757.CrossRefPubMedGoogle Scholar
  39. 39.
    Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developments Cell, 15(2), 261–271.CrossRefGoogle Scholar
  41. 41.
    Wang, S., & Olson, E. N. (2009). AngiomiRs—Key regulators of angiogenesis. Current Opinion in Genetics and Development, 19(3), 205–211.CrossRefPubMedGoogle Scholar
  42. 42.
    Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Developments Cell, 15(2), 272–284.CrossRefGoogle Scholar
  43. 43.
    Ullah, M. F., & Aatif, M. (2009). The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 35(3), 193–200.CrossRefPubMedGoogle Scholar
  44. 44.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.CrossRefPubMedGoogle Scholar
  45. 45.
    Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462–469.CrossRefPubMedGoogle Scholar
  46. 46.
    Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10(3), 155–159.CrossRefPubMedGoogle Scholar
  47. 47.
    Reis, E. M., Nakaya, H. I., Louro, R., Canavez, F. C., Flatschart, A. V., Almeida, G. T., et al. (2004). Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene, 23(39), 6684–6692.CrossRefPubMedGoogle Scholar
  48. 48.
    Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353(17), 1793–1801. Erratum in: N Engl J Med355(5):533.CrossRefPubMedGoogle Scholar
  49. 49.
    Girard, A., Sachidanandam, R., Hannon, G. J., & Carmell, M. A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442(7099), 199–202.PubMedGoogle Scholar
  50. 50.
    Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207.PubMedGoogle Scholar
  51. 51.
    Saito, K., Nishida, K. M., Mori, T., Kawamura, Y., Miyoshi, K., Nagami, T., et al. (2006). Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes and Development, 20(16), 2214–2222.CrossRefPubMedGoogle Scholar
  52. 52.
    O’Donnell, K. A., & Boeke, J. D. (2007). Mighty Piwis defend the germline against genome intruders. Cell, 129(1), 37–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Klattenhoff, C., & Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135(1), 3–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Lau, N. C., Seto, A. G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D. P., et al. (2006). Characterization of the piRNA complex from rat testes. Science, 313(5785), 363–367.CrossRefPubMedGoogle Scholar
  55. 55.
    Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., et al. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science, 315(5818), 1587–1590.CrossRefPubMedGoogle Scholar
  56. 56.
    Wurdinger, T., & Costa, F. F. (2007). Molecular therapy in the microRNA era. Pharmacogenomics Journal, 7(5), 297–304.CrossRefPubMedGoogle Scholar
  57. 57.
    Aravin, A., & Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 579(26), 5830–5840.CrossRefPubMedGoogle Scholar
  58. 58.
    Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D., & Calin, G. A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: Bioinformatics and therapeutic implications. Mammalian Genome, 19(7–8), 526–540.CrossRefPubMedGoogle Scholar
  59. 59.
    Weiler, J., Hunziker, J., & Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Therapy, 13(6), 496–502.CrossRefPubMedGoogle Scholar
  60. 60.
    Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689.CrossRefPubMedGoogle Scholar
  61. 61.
    Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.CrossRefPubMedGoogle Scholar
  62. 62.
    Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMedGoogle Scholar
  63. 63.
    Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). miR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.CrossRefPubMedGoogle Scholar
  64. 64.
    Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67(23), 11111–11116.CrossRefPubMedGoogle Scholar
  65. 65.
    Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 6p following 178.CrossRefPubMedGoogle Scholar
  66. 66.
    van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., & Olson, E. N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMedGoogle Scholar
  67. 67.
    Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2), 647–658.CrossRefPubMedGoogle Scholar
  68. 68.
    Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMedGoogle Scholar
  70. 70.
    Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.CrossRefPubMedGoogle Scholar
  71. 71.
    Gironella, M., Seux, M., Xie, M. J., Cano, C., Tomasini, R., Gommeaux, J., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMedGoogle Scholar
  72. 72.
    Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T., & Lowenstein, C. J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1516–1521.CrossRefPubMedGoogle Scholar
  73. 73.
    Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMedGoogle Scholar
  74. 74.
    He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.CrossRefPubMedGoogle Scholar
  75. 75.
    Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.CrossRefPubMedGoogle Scholar
  76. 76.
    Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., et al. (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 324(5935), 1710–1713.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Julianna K. Edwards
    • 1
  • Renata Pasqualini
    • 1
  • Wadih Arap
    • 1
  • George A. Calin
    • 2
  1. 1.David H. Koch CenterUniversity of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.Department of Experimental Therapeutics, and the Center for RNA Interference and Non-Coding RNAsUniversity of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations