Advertisement

Improved Function and Myocardial Repair of Infarcted Heart by Intracoronary Injection of Mesenchymal Stem Cell-Derived Growth Factors

  • Ba-Khoi Nguyen
  • Simon Maltais
  • Louis P. Perrault
  • Jean-François Tanguay
  • Jean-Claude Tardif
  • Louis-Mathieu Stevens
  • Mélanie Borie
  • François Harel
  • Samer Mansour
  • Nicolas NoiseuxEmail author
Article

Abstract

Transplantation of mesenchymal stem cells (MSC) improves repair and function recovery following myocardial infarction (MI), but underlying mechanisms remain to be elucidated. We hypothesize that MSC could achieve protection by paracrine effects through released mediators rather than direct cardiac regeneration. We sought to characterize the effects of MSC-secreted growth factors on extent of early recovery from MI. Swine subjected to acute MI by temporary balloon occlusion of the left anterior descending coronary artery using percutaneous techniques received intracoronary injection of either concentrated MSC-derived growth factors or control medium. Animals were killed at 7 days to evaluate early effects. Treatment with MSC-derived factors significantly reduced cardiac troponin-T elevation and improved echocardiographic parameters, including fractional area shortening, stroke volume, cardiac output, and wall motion score index. Quantitative evaluation of fibrosis by Verhoff staining revealed a reduction of the fibrotic area in the infarcted zone. Similarly, Masson’s trichrome staining revealed reduced myocardial damage as demonstrated by areas of relatively preserved myocardium in the infarcted area. TUNEL assay demonstrated less cardiomyocyte apoptosis. Protein array detected the presence of angiogenic (vascular endothelial growth factor, endothelin, and epiregulin), anti-apoptotic (Galectin-3, Smad-5, sRFP-1, and sRFP-4) and anti-remodeling factors. Reverse transcription polymerase chain reaction confirmed the expression of these factors. In summary, a single intracoronary injection of concentrated biologically active factors secreted by MSC could achieve early protection of ischemic myocardium and improve cardiac repair and contractility. MSC-derived growth factors injection (rather than MSC themselves) should be evaluated as a novel therapy to treat ischemic heart disease, avoiding many practical and technical issues of cell therapy.

Keywords

Cardiac Function Cellular Therapy Growth Factors Myocardial Ischemia Stem Cells 

Notes

Acknowledgements

We acknowledge Dr. D.C. Roy (Hôpital Maisonneuve-Rosemont) for his contribution in flow cytometric analyses. We thank M.P. Mathieu, E. Reny-Nolin, S. Gilligan, P. Geoffroy, and D. Lauzier for their precious help in this study and Dr Yan Fen Shi for the echocardiographic analysis. Drs. Noiseux and Perrault are scholars of Fonds de la Recherche en Santé du Québec (FRSQ). Dr. Noiseux and Perrault are supported by the Heart and Stroke Foundation of Québec, and Department of Surgery, Université de Montréal. Dr Stevens is supported by the Canadian Institutes of Health Research (CIHR).

Disclosures

No conflict of interest to disclose.

Supplementary material

12265_2010_9171_MOESM1_ESM.doc (42 kb)
Supplementary data (DOC 42 kb)
12265_2010_9171_Fig6_ESM.jpg (409 kb)
Supplementary figure Echocardiographic analysis up to 28 days. A Intracoronary injection of MSC-derived growth factors after acute MI had persistent favorable effects on cardiac function as revealed by a significantly improved WMSI, used as an indicator of LV function and contractility (P < 0.001). B Similarly, LVEF tended to be worst in the control group (P = 0.072). Number of animals: n = 11 and 12 at baseline, n = 5 at 3 days, n = 6 and 7 at 7 days, and n = 3 at 30 days for controls and MSC-CM, respectively. Statistical analyses were made using longitudinal mixed effect models (JPEG 408 kb) (JPEG 408 kb)

References

  1. 1.
    Timmermans, F., De Sutter, J., & Gillebert, T. C. (2003). Stem cells for the heart, are we there yet? Cardiology, 100, 176–185.CrossRefPubMedGoogle Scholar
  2. 2.
    Dowell, J. D., Rubart, M., Pasumarthi, K. B., Soonpaa, M. H., & Field, L. J. (2003). Myocyte and myogenic stem cell transplantation in the heart. Cardiovascular Research, 58, 336–350.CrossRefPubMedGoogle Scholar
  3. 3.
    Raeburn, C. D., Zimmerman, M. A., Arya, J., Banerjee, A., & Harken, A. H. (2002). Stem cells and myocardial repair. Journal of the American College of Surgeons, 195, 686–693.CrossRefPubMedGoogle Scholar
  4. 4.
    Tomita, S., Mickle, D. A., Weisel, R. D., et al. (2002). Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. Journal of Thoracic and Cardiovascular Surgery, 123, 1132–1140.CrossRefPubMedGoogle Scholar
  5. 5.
    Tomita, S., Li, R. K., Weisel, R. D., et al. (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation, 100, II247–II256.PubMedGoogle Scholar
  6. 6.
    Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Annals of Thoracic Surgery, 73, 1919–1925. discussion 26.CrossRefPubMedGoogle Scholar
  7. 7.
    Mangi, A. A., Noiseux, N., Kong, D., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201. Epub 2003 Aug 10.CrossRefPubMedGoogle Scholar
  8. 8.
    Gnecchi, M., He, H., Liang, O. D., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.CrossRefPubMedGoogle Scholar
  9. 9.
    Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14, 840–850.CrossRefPubMedGoogle Scholar
  10. 10.
    Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.CrossRefPubMedGoogle Scholar
  11. 11.
    Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549.CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi, M., Li, T. S., Suzuki, R., et al. (2006). Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. American Journal of Physiology. Heart and Circulatory Physiology, 291, H886–H893.CrossRefPubMedGoogle Scholar
  13. 13.
    Mirotsou, M., Zhang, Z., Deb, A., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of the United States of America, 104, 1643–1648.CrossRefPubMedGoogle Scholar
  14. 14.
    Rehman, J., Traktuev, D., Li, J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.CrossRefPubMedGoogle Scholar
  15. 15.
    Gnecchi, M., He, H., Noiseux, N., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. Faseb Journal, 20, 661–669.CrossRefPubMedGoogle Scholar
  16. 16.
    Shabbir, A., Zisa, D., Suzuki, G., & Lee, T. (2009). Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1888–H1897.CrossRefPubMedGoogle Scholar
  17. 17.
    Allan, D. S., Dubé, P., Roy, J., Busque, L., & Roy, D. C. (2007). Endothelial-like vascular progenitor cells from autologous and allogeneic donors: mobilization features distinct from hematopoetic progenitors. Biology of Blood & Marrow Transplantation, 13, 433–439.CrossRefGoogle Scholar
  18. 18.
    Guimond, M., Balassy, A., Barrette, M., Brochu, S., Perreault, C., & Roy, D. C. (2002). P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood, 100, 375–382.CrossRefPubMedGoogle Scholar
  19. 19.
    Perrault, L. P., Malo, O., Desjardins, N., et al. (2002). Surgical experience with retroperitoneal heterotopic heart transplantation in the large white domestic swine. Journal of Investigative Surgery, 15, 45–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Pye, J., Ardeshirpour, F., McCain, A., et al. (2003). Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 284, H919–H926.PubMedGoogle Scholar
  21. 21.
    Berry, M. F., Engler, A. J., Woo, Y. J., et al. (2006). Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. American Journal of Physiology. Heart and Circulatory Physiology, 290, H2196–H2203.CrossRefPubMedGoogle Scholar
  22. 22.
    Ananiadou, O. G., Bibou, K., Drossos, G. E., et al. (2007). Effect of profound hypothermia during circulatory arrest on neurologic injury and apoptotic repressor protein Bcl-2 expression in an acute porcine model. Journal of Thoracic and Cardiovascular Surgery, 133, 919–926.CrossRefPubMedGoogle Scholar
  23. 23.
    Wollert, K. C., & Drexler, H. (2005). Clinical applications of stem cells for the heart. Circulation Research, 96, 151–163.CrossRefPubMedGoogle Scholar
  24. 24.
    Gnecchi, M., He, H., Melo, L. G., et al. (2009). Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells, 27, 971–979.CrossRefPubMedGoogle Scholar
  25. 25.
    Benzhi, C., Limei, Z., Ning, W., et al. (2009). Bone marrow mesenchymal stem cells upregulate transient outward potassium currents in postnatal rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 47, 41–48.CrossRefPubMedGoogle Scholar
  26. 26.
    Braga, L. M., Rosa, K., Rodrigues, B., et al. (2008). Systemic delivery of adult stem cells improves cardiac function in spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 35, 113–119.PubMedGoogle Scholar
  27. 27.
    Xu, R. X., Chen, X., Chen, J. H., Han, Y., & Han, B. M. (2009). Mesenchymal stem cells promote cardiomyocyte hypertrophy in vitro through hypoxia-induced paracrine mechanisms. Clinical and Experimental Pharmacology and Physiology, 36, 176–180.CrossRefPubMedGoogle Scholar
  28. 28.
    Guo, J., Lin, G. S., Bao, C. Y., Hu, Z. M., & Hu, M. Y. (2007). Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation, 30, 97–104.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakanishi, C., Yamagishi, M., Yamahara, K., et al. (2008). Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 374, 11–16.CrossRefPubMedGoogle Scholar
  30. 30.
    De Sousa, E., Veksler, V., Minajeva, A., et al. (1999). Subcellular creatine kinase alterations. Implications in heart failure. Circulation Research, 85, 68–76.PubMedGoogle Scholar
  31. 31.
    O'Brien, P. J., Dameron, G. W., Beck, M. L., et al. (1997). Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animal Science, 47, 486–495.PubMedGoogle Scholar
  32. 32.
    Vikenes, K., Westby, J., Matre, K., Kuiper, K. K., Farstad, M., & Nordrehaug, J. E. (2002). Release of cardiac troponin I after temporally graded acute coronary ischaemia with electrocardiographic ST depression. International Journal of Cardiology, 85, 243–251. discussion 52-3.CrossRefPubMedGoogle Scholar
  33. 33.
    Abbate, A., Bussani, R., Amin, M. S., Vetrovec, G. W., & Baldi, A. (2006). Acute myocardial infarction and heart failure: role of apoptosis. International Journal of Biochemistry and Cell Biology, 38, 1834–1840.CrossRefPubMedGoogle Scholar
  34. 34.
    Galasko, G. I., Basu, S., Lahiri, A., & Senior, R. (2001). A prospective comparison of echocardiographic wall motion score index and radionuclide ejection fraction in predicting outcome following acute myocardial infarction. Heart, 86, 271–276.CrossRefPubMedGoogle Scholar
  35. 35.
    Noiseux, N., Lopez Ilasaca, M., Gnecchi, M., et al. (2006). Mesenchymal stem cells over-expressing akt dramatically repairs infarcted myocardium and improves cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy Journal, 14, 840–850.Google Scholar
  36. 36.
    Janssens, S., Dubois, C., Bogaert, J., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 367, 113–121.CrossRefPubMedGoogle Scholar
  37. 37.
    Lunde, K., Solheim, S., Aakhus, S., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355, 1199–1209.CrossRefPubMedGoogle Scholar
  38. 38.
    Strauer, B. E., Brehm, M., Zeus, T., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106, 1913–1918.CrossRefPubMedGoogle Scholar
  39. 39.
    Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363, 783–784.CrossRefPubMedGoogle Scholar
  40. 40.
    Freyman, T., Polin, G., Osman, H., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27, 1114–1122.CrossRefPubMedGoogle Scholar
  41. 41.
    Buschmann, I., Heil, M., Jost, M., & Schaper, W. (2003). Influence of inflammatory cytokines on arteriogenesis. Microcirculation, 10, 371–379.PubMedGoogle Scholar
  42. 42.
    Heil, M., Ziegelhoeffer, T., Mees, B., & Schaper, W. (2004). A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circulation Research, 94, 573–574.CrossRefPubMedGoogle Scholar
  43. 43.
    Kinnaird, T., Stabile, E., Burnett, M. S., & Epstein, S. E. (2004). Bone marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circulation Research, 95, 354–363.CrossRefPubMedGoogle Scholar
  44. 44.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.CrossRefPubMedGoogle Scholar
  45. 45.
    Singla, D. K., & McDonald, D. E. (2007). Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1590–H1595.CrossRefPubMedGoogle Scholar
  46. 46.
    Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390, 834–838.CrossRefPubMedGoogle Scholar
  47. 47.
    Topol, E. J. (2003). Current status and future prospects for acute myocardial infarction therapy. Circulation, 108, III6–III13.PubMedGoogle Scholar
  48. 48.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., et al. (2007). Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.CrossRefPubMedGoogle Scholar
  49. 49.
    Ince, H., Valgimigli, M., Petzsch, M., et al. (2008). Cardiovascular events and re-stenosis following administration of G-CSF in acute myocardial infarction: systematic review and meta-analysis. Heart, 94, 610–616.CrossRefPubMedGoogle Scholar
  50. 50.
    Mansour, S., Roy, D. C., Bouchard, V., et al. (2009). COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133+ Bone Marrow Stem Cells to Placebo in Patients After Acute Myocardial Infarction and Left Ventricular Dysfunction: Study Rationale and Design. Journal of Cardiovascular Translational Research, in press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ba-Khoi Nguyen
    • 1
  • Simon Maltais
    • 2
  • Louis P. Perrault
    • 2
  • Jean-François Tanguay
    • 3
  • Jean-Claude Tardif
    • 3
  • Louis-Mathieu Stevens
    • 1
    • 4
  • Mélanie Borie
    • 4
  • François Harel
    • 5
  • Samer Mansour
    • 4
    • 6
  • Nicolas Noiseux
    • 1
    • 4
    • 7
    Email author
  1. 1.Cardiac SurgeryMontreal University Hospital Centre (CHUM)MontrealCanada
  2. 2.Cardiac SurgeryMontreal Heart InstituteMontrealCanada
  3. 3.CardiologyMontreal Heart InstituteMontrealCanada
  4. 4.CHUM Research Center (CRCHUM)MontréalCanada
  5. 5.Nuclear MedicineMontreal Heart InstituteMontrealCanada
  6. 6.CardiologyCHUMMontrealCanada
  7. 7.CHUM Hôtel-Dieu de MontréalMontréalCanada

Personalised recommendations