General Overview of the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations

  • Mª Eugenia Vázquez-Álvarez
  • Ricardo Sanz-Ruiz
  • Enrique Gutiérrez
  • Adolfo Villa
  • Mª Eugenia Fernández
  • Sandra Vázquez
  • Mª José Lorenzo
  • Lucía Fernández
  • Isaac Pascual
  • Pedro L. Sánchez
  • Francisco Fernández-Avilés
Article
  • 59 Downloads

Abstract

Being one of the main stem cell therapy meetings of the year, the Sixth International Symposium on Stem Cell Therapy and Cardiovascular Innovations was held on April 23rd–24th, 2009, at the Auditorium of the High Council of Scientific Research of Spain (CSIC) in Madrid. Gathering the most prestigious basic researchers and clinical experts in the field of cardiovascular regenerative medicine, the aim of the meeting was to discuss the available evidence and the recent contributions from preclinical investigators, cardiologists, and cardiac surgeons in a participative translational fashion. The role of young “clinician scientists” was reinforced with a special poster session and three awards. The main conclusions of the symposium were (1) that standardization, larger clinical trials, and true translational research are needed, and (2) that new—allogeneic—stem cell products, biotechnological devices, and cell-based bioartificial organs are potentially exciting options for the future.

Keywords

Stem Cells Translational Research Tissue Engineering Heart Replacement Biotechnology 

References

  1. 1.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.CrossRefPubMedGoogle Scholar
  2. 2.
    Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.CrossRefPubMedGoogle Scholar
  3. 3.
    Van’t Hof, W., Mal, N., Huang, Y., Zhang, M., Popovic, Z., Forudi, F., et al. (2007). Direct delivery of syngeneic and allogeneic large-scale expanded multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy, 9(5), 477–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., et al. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9864–9869.CrossRefPubMedGoogle Scholar
  5. 5.
    Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172.PubMedGoogle Scholar
  6. 6.
    Swijnenburg, R. J., Schrepfer, S., Govaert, J. A., Cao, F., Ransohoff, K., Sheikh, A. Y., et al. (2008). Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12991–12996.CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., et al. (2008). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy, 16(3), 571–579.CrossRefPubMedGoogle Scholar
  8. 8.
    Pasha, Z., Wang, Y., Sheikh, R., Zhang, D., Zhao, T., & Ashraf, M. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascular Research, 77(1), 134–142.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A. T., Popovic, Z. B., et al. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes following myocardial infarction. FASEB Journal, 21(12), 3197–3207.CrossRefPubMedGoogle Scholar
  10. 10.
    Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.CrossRefPubMedGoogle Scholar
  11. 11.
    Piao, H., Kwon, J. S., Piao, S., Sohn, J. H., Lee, Y. S., Bae, J. W., et al. (2007). Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials, 28(4), 641–649.CrossRefPubMedGoogle Scholar
  12. 12.
    Cortes-Morichetti, M., Frati, G., Schussler, O., Van Huyen, J. P., Lauret, E., Genovese, J. A., et al. (2007). Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Engineering, 13(11), 2681–2687.CrossRefPubMedGoogle Scholar
  13. 13.
    Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM Trial): Clinical feasibility study. Annals of Thoracic Surgery, 85(3), 901–908.CrossRefPubMedGoogle Scholar
  14. 14.
    Schussler, O., Coirault, C., Louis-Tisserand, M., Al-Chare, W., Oliviero, P., Menard, C., et al. (2009). Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nature Clinical Practice Cardiovascular Medicine, 6(3), 240–249.CrossRefPubMedGoogle Scholar
  15. 15.
    Dégano, I. R., Quintana, L., Vilalta, M., Horna, D., Rubio, N., Borrós, S., et al. (2009). The effect of self-assembling peptide nanofiber scaffolds on mouse embryonic fibroblast implantation and proliferation. Biomaterials, 30(6), 1156–1165.CrossRefPubMedGoogle Scholar
  16. 16.
    Genovese, J. A., Spadaccio, C., Chachques, E., Schussler, O., Carpentier, A., Chachques, J. C., et al. (2009). Cardiac pre-differentiation of human mesenchymal stem cells by electrostimulation. Frontiers in Bioscience, 14, 2996–3002.CrossRefPubMedGoogle Scholar
  17. 17.
    Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., et al. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. Journal of Cardiac Failure, 15(3), 171–181.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Rooij, E., Marshall, W. S., & Olson, E. N. (2008). Toward microRNA-based therapeutics for heart disease: The sense in antisense. Circulation Research, 103(9), 919–928.CrossRefPubMedGoogle Scholar
  19. 19.
    Jones, R. H., Velazquez, E. J., Michler, R. E., Sopko, G., Oh, J. K., O’Connor, C. M., et al. (2009). Coronary bypass surgery with or without surgical ventricular reconstruction. New England Journal of Medicine, 360(17), 1705–1717.CrossRefPubMedGoogle Scholar
  20. 20.
    Lietz, K. & Miller, L. W. (2008). Destination therapy: Current results and future promise. Seminars in Thoracic and Cardiovascular Surgery, 20(3), 225–233.CrossRefPubMedGoogle Scholar
  21. 21.
    Hernandez, A. F., Shea, A. M., Milano, C. A., Rogers, J. G., Hammill, B. G., O’Connor, C. M., et al. (2008). Long-term outcomes and costs of ventricular assist devices among Medicare beneficiaries. Journal of the American Medical Association, 300(20), 2398–2406.CrossRefPubMedGoogle Scholar
  22. 22.
    Yacoub, M. (2008). Heart transplantation: The end of the beginning. American Journal of Transplantation, 8(9), 1767–1768.CrossRefPubMedGoogle Scholar
  23. 23.
    Ali, A. A., Lim, E., Thanikachalam, M., Sudarshan, C., White, P., Parameshwar, J., et al. (2007). Cardiac arrest in the organ donor does not negatively influence recipient survival after heart transplantation. European Journal of Cardio-Thoracic Surgery, 31(5), 929–933.CrossRefPubMedGoogle Scholar
  24. 24.
    Vincenti, F. & Kirk, A. D. (2008). What’s next in the pipeline. American Journal of Transplantation, 8(10), 1972–1981.CrossRefPubMedGoogle Scholar
  25. 25.
    Cozzi, E., Bosio, E., Seveso, M., Rubello, D., & Ancona, E. (2009). Xenotransplantation as a model of integrated, multidisciplinary research. Organogenesis, 5(1), 288–296.PubMedGoogle Scholar
  26. 26.
    Lederman, R. J., Guttman, M. A., Peters, D. C., Thompson, R. B., Sorger, J. M., Dick, A. J., et al. (2002). Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation, 105(11), 1282–1284.PubMedGoogle Scholar
  27. 27.
    De Silva, R., Gutierrez, L. F., Raval, A. N., McVeigh, E. R., Ozturk, C., & Lederman, R. J. (2006). X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections. Validation in a swine model of myocardial infarction. Circulation, 114(25), 2342–2350.CrossRefPubMedGoogle Scholar
  28. 28.
    Taylor, D. A. (2009). Cells for the treatment, prevention, and cure of cardiovascular disease. Texas Heart Institute Journal, 3(2), 148–149.Google Scholar
  29. 29.
    Zenovich, A. G. & Taylor, D. A. (2008). Atherosclerosis as a disease of failed endogenous repair. Frontiers in Bioscience, 13, 3621–3636.CrossRefPubMedGoogle Scholar
  30. 30.
    Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364(9424), 141–148.CrossRefPubMedGoogle Scholar
  31. 31.
    Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1210–1221.CrossRefPubMedGoogle Scholar
  32. 32.
    Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1199–1209.CrossRefPubMedGoogle Scholar
  33. 33.
    Huikuri, H. V., Kervinen, K., Niemelä, M., Ylitalo, K., Säily, M., Koistinen, P., et al. (2008). Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. European Heart Journal, 29(22), 2723–2732.CrossRefPubMedGoogle Scholar
  34. 34.
    Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.CrossRefPubMedGoogle Scholar
  35. 35.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167(10), 989–997.CrossRefPubMedGoogle Scholar
  36. 36.
    Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50(18), 1761–1767.CrossRefPubMedGoogle Scholar
  37. 37.
    Burt, R. K., Loh, Y., Pearce, W., Beohar, N., Barr, W. G., Craig, R., et al. (2008). Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. Journal of the American Medical Association, 299(8), 925–936.CrossRefPubMedGoogle Scholar
  38. 38.
    Tendera, M., Wojakowski, W., Ruzyłło, W., Chojnowska, L., Kepka, C., Tracz, W., et al. (2009). Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: Results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. European Heart Journal, 30(11), 1313–1321.CrossRefPubMedGoogle Scholar
  39. 39.
    Van der Laan, A., Hirsch, A., Nijveldt, R., Van der Vleuten, P. A., Van der Giessen, W. J., Doevendans, P. A., et al. (2008). Bone marrow cell therapy after acute myocardial infarction: The HEBE Trial in perspective, first results. Netherlands Heart Journal, 16(12), 436–439.PubMedGoogle Scholar
  40. 40.
    Menasché, P. (2009). Cell based therapy for heart disease: A clinically oriented perspective. Molecular Therapy, 17(5), 758–766.CrossRefPubMedGoogle Scholar
  41. 41.
    Richter, S. H., Garner, J. P., & Würbel, H. (2009). Environmental standardization: Cure or cause of poor reproducibility in animal experiments? Nature Methods, 6(4), 257–261.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mª Eugenia Vázquez-Álvarez
    • 1
  • Ricardo Sanz-Ruiz
    • 1
  • Enrique Gutiérrez
    • 1
  • Adolfo Villa
    • 1
  • Mª Eugenia Fernández
    • 1
  • Sandra Vázquez
    • 1
  • Mª José Lorenzo
    • 1
  • Lucía Fernández
    • 1
  • Isaac Pascual
    • 1
  • Pedro L. Sánchez
    • 1
  • Francisco Fernández-Avilés
    • 1
  1. 1.Cardiology DepartmentHospital General Universitario Gregorio MarañónMadridSpain

Personalised recommendations