Advertisement

Stem Cells in the Infarcted Heart

  • Dinender K. SinglaEmail author
Article

Abstract

Stem cell transplantation is currently generating a significant interest for use in the future treatment of cardiovascular diseases. Stem cell populations are rapidly increasing, and we are still in the search of optimal cell types to use in clinical trials as bone marrow stem cells did not show significant improvement in cardiac function following transplantation. Experimental stem cell studies raised the question on the true differentiation of tissue-specific cell types following transplantation. In fact, recent studies suggest that improved cardiac function is associated with inhibition of apoptosis and fibrosis provided by factors released from stem cells following transplantation. In this review, we will discuss the effects of transplanted stem cells on engraftment and differentiation as well as factors released from stem cells on apoptosis and cardiac remodeling.

Keywords

Myocardial Infarction Heart Regeneration Factors Released from Stem Cells Teratoma Cell Transplantation 

Notes

Acknowledgment

We acknowledge the support provided by 1R21 HL085795-01A1 and 1R01HL090646-01 (to DKS).

References

  1. 1.
    Anversa, P., Kajstura, J., & Olivetti, G. (1996). Myocyte death in heart failure. Current Opinion in Cardiology, 11, 245–251.CrossRefPubMedGoogle Scholar
  2. 2.
    Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.CrossRefPubMedGoogle Scholar
  3. 3.
    Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.CrossRefPubMedGoogle Scholar
  4. 4.
    Dai, W., Hale, S. L., & Kloner, R. A. (2007). Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats 1. Regeneración Médica, 2, 63–68.Google Scholar
  5. 5.
    Emgard, M., Hallin, U., Karlsson, J., Bahr, B. A., Brundin, P., & Blomgren, K. (2003). Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: A role for protease activation. Journal of Neurochemistry, 86, 1223–1232.PubMedCrossRefGoogle Scholar
  6. 6.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.CrossRefPubMedGoogle Scholar
  7. 7.
    Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB Journal, 20, 661–669.CrossRefPubMedGoogle Scholar
  8. 8.
    Haider, H. K., & Ashraf, M. (2005). Bone marrow cell transplantation in clinical perspective. Journal of Molecular and Cellular Cardiology, 38, 225–235.CrossRefPubMedGoogle Scholar
  9. 9.
    Haider, H. K., & Ashraf, M. (2005). Bone marrow stem cell transplantation for cardiac repair. American Journal of Physiology. Heart and Circulatory Physiology, 288, H2557–H2567.CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashi, M., Li, T. S., Ito, H., Mikamo, A., & Hamano, K. (2004). Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: An experimental study. Cell Transplantation, 13, 639–647.CrossRefPubMedGoogle Scholar
  11. 11.
    Hodgson, D. M., Behfar, A., Zingman, L. V., Kane, G. C., Perez-Terzic, C., Alekseev, A. E., et al. (2004). Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 287, H471–H479.CrossRefPubMedGoogle Scholar
  12. 12.
    Jugdutt, B. I. (2003). Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets. Cardiovascular & Haematological Disorders, 3, 1–30.CrossRefGoogle Scholar
  13. 13.
    Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation, 108, 1395–1403.CrossRefPubMedGoogle Scholar
  14. 14.
    Kofidis, T., de Bruin, J. L., Yamane, T., Balsam, L. B., Lebl, D. R., Swijnenburg, R. J., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22, 1239–1245.CrossRefPubMedGoogle Scholar
  15. 15.
    Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., Swijnenburg, R. J., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111, 2486–2493.CrossRefPubMedGoogle Scholar
  16. 16.
    Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction 12. Circulation Research, 95, 1191–1199.CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar, D., & Jugdutt, B. I. (2003). Apoptosis and oxidants in the heart. Journal of Laboratory and Clinical Medicine, 142, 288–297.CrossRefPubMedGoogle Scholar
  18. 18.
    Kumar, D., Kamp, T. J., & LeWinter, M. M. (2005). Embryonic stem cells: Differentiation into cardiomyocytes and potential for heart repair and regeneration. Coronary Artery Disease, 16, 111–116.CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar, D., Lou, H., & Singal, P. K. (2002). Oxidative stress and apoptosis in heart dysfunction. Herz, 27, 662–668.CrossRefPubMedGoogle Scholar
  20. 20.
    Laumonier, T., Yang, S., Konig, S., Chauveau, C., Anegon, I., Hoffmeyer, P., et al. (2008). Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig. Molecular Therapy, 16, 404–410.CrossRefPubMedGoogle Scholar
  21. 21.
    Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127.CrossRefPubMedGoogle Scholar
  22. 22.
    Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 355, 1199–1209.CrossRefPubMedGoogle Scholar
  23. 23.
    Menard, C., Hagege, A. A., Agbulut, O., Barro, M., Morichetti, M. C., Brasselet, C., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet, 366, 1005–1012.CrossRefPubMedGoogle Scholar
  24. 24.
    Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113, 1287–1294.CrossRefPubMedGoogle Scholar
  25. 25.
    Min, J. Y., Chen, Y., Malek, S., Meissner, A., Xiang, M., Ke, Q., et al. (2005). Stem cell therapy in the aging hearts of Fisher 344 rats: Synergistic effects on myogenesis and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 130, 547–553.CrossRefPubMedGoogle Scholar
  26. 26.
    Min, J. Y., Yang, Y., Converso, K. L., Liu, L., Huang, Q., Morgan, J. P., et al. (2002). Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. Journal of Applied Physiology, 92, 288–296.CrossRefPubMedGoogle Scholar
  27. 27.
    Moriya, K., Yoshikawa, M., Saito, K., Ouji, Y., Nishiofuku, M., Hayashi, N., et al. (2007). Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World Journal of Gastroenterology, 13, 866–873.PubMedGoogle Scholar
  28. 28.
    Muller-Ehmsen, J., Whittaker, P., Kloner, R. A., Dow, J. S., Sakoda, T., Long, T. I., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34, 107–116.CrossRefPubMedGoogle Scholar
  29. 29.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.CrossRefPubMedGoogle Scholar
  30. 30.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells 4. Circulation, 120, 408–416.CrossRefPubMedGoogle Scholar
  31. 31.
    Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.CrossRefPubMedGoogle Scholar
  32. 32.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMedGoogle Scholar
  33. 33.
    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.CrossRefPubMedGoogle Scholar
  34. 34.
    Schachinger, V., Assmus, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44, 1690–1699.CrossRefPubMedGoogle Scholar
  35. 35.
    Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355, 1210–1221.CrossRefPubMedGoogle Scholar
  36. 36.
    Singla, D. K. (2009). Embryonic stem cells in cardiac repair and regeneration. Antioxidants and Redox Signaling, 11(8), 1857–1863.CrossRefPubMedGoogle Scholar
  37. 37.
    Singla, D. K., Hacker, T. A., Ma, L., Douglas, P. S., Sullivan, R., Lyons, G. E., et al. (2006). Transplantation of embryonic stem cells into the infarcted mouse heart: Formation of multiple cell types. Journal of Molecular and Cellular Cardiology, 40, 195–200.CrossRefPubMedGoogle Scholar
  38. 38.
    Singla, D. K., Lyons, G. E., & Kamp, T. J. (2007). Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1308–H1314.CrossRefPubMedGoogle Scholar
  39. 39.
    Singla, D. K., & McDonald, D. E. (2007). Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1590–H1595.CrossRefPubMedGoogle Scholar
  40. 40.
    Singla, D. K., Singla, R. D., & McDonald, D. E. (2008). Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through P1–3kinase/Akt but not ERK pathway. American Journal of Physiology Heart and Circulatory Physiology, 294(2), H907–H913.CrossRefGoogle Scholar
  41. 41.
    Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110, II219–II224.PubMedGoogle Scholar
  42. 42.
    Suzuki, K., Smolenski, R. T., Jayakumar, J., Murtuza, B., Brand, N. J., & Yacoub, M. H. (2000). Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation, 102, III216–III221.PubMedGoogle Scholar
  43. 43.
    Tendera, M., Wojakowski, W., Ruzyllo, W., Chojnowska, L., Kepka, C., Tracz, W., et al. (2009). Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: Results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial 1. European Heart Journal, 30, 1313–1321.CrossRefPubMedGoogle Scholar
  44. 44.
    Togel, F., Hu, Z., Weiss, K., Isaac, J., Lange, C., & Westenfelder, C. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms 9. American Journal of Physiology. Renal, Physiology, 289, F31–F42.CrossRefGoogle Scholar
  45. 45.
    Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis 1. Journal of Molecular and Cellular Cardiology, 37, 1041–1052.CrossRefPubMedGoogle Scholar
  46. 46.
    Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction 1. Circulation, 110, 3213–3220.CrossRefPubMedGoogle Scholar
  47. 47.
    Xu, M., Uemura, R., Dai, Y., Wang, Y., Pasha, Z., & Ashraf, M. (2007). In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. Journal of Molecular and Cellular Cardiology, 42, 441–448.CrossRefPubMedGoogle Scholar
  48. 48.
    Xu, M., Uemura, R., Dai, Y., Wang, Y., Pasha, Z., & Ashraf, M. (2007). In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function 1. Journal of Molecular and Cellular Cardiology, 42, 441–448.CrossRefPubMedGoogle Scholar
  49. 49.
    Yamada, S., Nelson, T. J., Behfar, A., Crespo-Diaz, R. J., Fraidenraich, D., & Terzic, A. (2009). Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype. Stem Cells, 27, 1697–1705.CrossRefPubMedGoogle Scholar
  50. 50.
    Yamada, S., Nelson, T. J., Behfar, A., Crespo-Diaz, R. J., Fraidenraich, D., & Terzic, A. (2009). Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype 5. Stem Cells, 27, 1697–1705.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang, Z., Deb, A., Zhang, Z., Pachori, A., He, W., Guo, J., et al. (2009). Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a 1. J Mol Cell Cardiol, 46, 370–377.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., & Murry, C. E. (2001). Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33, 907–921.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Biomolecular Science Center, Burnett School of Biomedical Sciences, College of MedicineUniversity of Central FloridaOrlandoUSA

Personalised recommendations