Gender Dimorphisms in Progenitor and Stem Cell Function in Cardiovascular Disease

  • Jeremy L. Herrmann
  • Aaron M. Abarbanell
  • Brent R. Weil
  • Mariuxi C. Manukyan
  • Jeffrey A. Poynter
  • Yue Wang
  • Arthur C. Coffey
  • Daniel R. Meldrum
Article

Abstract

Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.

Keywords

Progenitor Cells Stem Cell Therapy Sex Steroids Gender Differences Cardiovascular Disease 

Abbreviations

AR

Androgen receptor

BMP-2

Bone morphogenetic protein-2

CAD

Coronary artery disease

E2

17β-estradiol

eNOS

Endothelial nitric oxide synthase

ER

Estrogen receptor

EPC

Endothelial progenitor cell

ESC

Embryonic stem cell

FGF

Fibroblast growth factor

HIF

Hypoxia-inducible factor

IGF-1

Insulin-like growth factor-1

IL

Interleukin

I/R

Ischemia/reperfusion

MI

Myocardial infarction

MSC

Mesenchymal stem cell

OVX

Ovariectomized

SDF-1

Stromal cell-derived factor-1

SOCS/3

Suppressor of cytokine signaling

STAT3

Signal transducer and activator of transcription

T

Testosterone

TNF

Tumor necrosis factor

TNFR

Tumor necrosis factor receptor

VEGF

Vascular endothelial growth factor

VEGR

Vascular endothelial growth factor receptor

References

  1. 1.
    Kher, A., Meldrum, K. K., Wang, M., Tsai, B. M., Pitcher, J. M., & Meldrum, D. R. (2005). Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury. Cardiovascular Research, 67, 594–603.PubMedCrossRefGoogle Scholar
  2. 2.
    Choudhry, M. A., Schwacha, M. G., Hubbard, W. J., Kerby, J. D., Rue, L. W., Bland, K. I., et al. (2005). Gender differences in acute response to trauma–hemorrhage. Shock, 24(Suppl 1), 101–106.PubMedCrossRefGoogle Scholar
  3. 3.
    Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2006). Gender and susceptibility to sepsis following trauma. Endocr Metab Immune Disord Drug Targets, 6, 127–135.PubMedGoogle Scholar
  4. 4.
    Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses’ health study. New England Journal of Medicine, 325, 756–762.PubMedGoogle Scholar
  5. 5.
    Kher, A., Wang, M., Tsai, B. M., Pitcher, J. M., Greenbaum, E. S., Nagy, R. D., et al. (2005). Sex differences in the myocardial inflammatory response to acute injury. Shock, 23, 1–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Grady, D., Rubin, S. M., Petitti, D. B., Fox, C. S., Black, D., Ettinger, B., et al. (1992). Hormone therapy to prevent disease and prolong life in postmenopausal women. Annals of Internal Medicine, 117, 1016–1037.PubMedGoogle Scholar
  7. 7.
    Urbich, C. & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95, 343–353.PubMedCrossRefGoogle Scholar
  8. 8.
    Crisostomo, P. R., Wang, M., Markel, T. A., Lahm, T., Abarbanell, A. M., Herrmann, J. L., et al. (2007). Stem cell mechanisms and paracrine effects: Potential in cardiac surgery. Shock, 28, 375–383.PubMedCrossRefGoogle Scholar
  9. 9.
    Crisostomo, P. R., Abarbanell, A. M., Wang, M., Lahm, T., Wang, Y., & Meldrum, D. R. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1726–H1735.PubMedCrossRefGoogle Scholar
  10. 10.
    Farhat, M. Y., Lavigne, M. C., & Ramwell, P. W. (1996). The vascular protective effects of estrogen. FASEB Journal, 10, 615–624.PubMedGoogle Scholar
  11. 11.
    Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Villablanca, A. C., Tenwolde, A., Lee, M., Huck, M., Mumenthaler, S., & Rutledge, J. C. (2009). 17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice. J Cardiovasc Transl Res, 2, 289–299.PubMedCrossRefGoogle Scholar
  13. 13.
    Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., et al. (2001). Mechanisms of estrogen action. Physiological Reviews, 81, 1535–1565.PubMedGoogle Scholar
  14. 14.
    Liu, H., Liu, K., & Bodenner, D. L. (2005). Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation. Cytokine, 31, 251–257.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamada, H., Kim, M. K., Iwakura, A., Ii, M., Thorne, T., Qin, G., et al. (2006). Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 114, 2261–2270.PubMedCrossRefGoogle Scholar
  16. 16.
    Shao, R., Egecioglu, E., Weijdegard, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., et al. (2007). Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: Mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am J Physiol Endocrinol Metab, 293, E1430–E1442.PubMedCrossRefGoogle Scholar
  17. 17.
    Matthews, J., Almlof, T., Kietz, S., Leers, J., & Gustafsson, J. A. (2005). Estrogen receptor-alpha regulates SOCS-3 expression in human breast cancer cells. Biochemical and Biophysical Research Communications, 335, 168–174.PubMedCrossRefGoogle Scholar
  18. 18.
    Roggia, C., Gao, Y., Cenci, S., Weitzmann, M. N., Toraldo, G., Isaia, G., et al. (2001). Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 13960–13965.PubMedCrossRefGoogle Scholar
  19. 19.
    Leung, S. W., Teoh, H., Keung, W., & Man, R. Y. (2007). Non-genomic vascular actions of female sex hormones: Physiological implications and signalling pathways. Clinical and Experimental Pharmacology and Physiology, 34, 822–826.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, K. H., Moriarty, K., & Bender, J. R. (2008). Vascular cell signaling by membrane estrogen receptors. Steroids, 73, 864–869.PubMedCrossRefGoogle Scholar
  21. 21.
    Krasinski, K., Spyridopoulos, I., Asahara, T., van der Zee, R., Isner, J. M., & Losordo, D. W. (1997). Estradiol accelerates functional endothelial recovery after arterial injury. Circulation, 95, 1768–1772.PubMedGoogle Scholar
  22. 22.
    Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., & Arnal, J. F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation, 103, 423–428.PubMedGoogle Scholar
  23. 23.
    Toutain, C. E., Filipe, C., Billon, A., Fontaine, C., Brouchet, L., Guery, J. C., et al. (2009). Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arteriosclerosis, Thrombosis and Vascular Biology, 29, 1543–1550.CrossRefGoogle Scholar
  24. 24.
    Makela, S., Savolainen, H., Aavik, E., Myllarniemi, M., Strauss, L., Taskinen, E., et al. (1999). Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proceedings of the National Academy of Sciences of the United States of America, 96, 7077–7082.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, M., Wang, Y., Weil, B., Abarbanell, A., Herrmann, J., Tan, J., et al. (2009). Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 296, R972–R978.PubMedGoogle Scholar
  26. 26.
    Iafrati, M. D., Karas, R. H., Aronovitz, M., Kim, S., Sullivan, T. R., Jr., Lubahn, D. B., et al. (1997). Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nature Medicine, 3, 545–548.PubMedCrossRefGoogle Scholar
  27. 27.
    Karas, R. H., Hodgin, J. B., Kwoun, M., Krege, J. H., Aronovitz, M., Mackey, W., et al. (1999). Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 15133–15136.PubMedCrossRefGoogle Scholar
  28. 28.
    Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA, 280, 605–613.PubMedCrossRefGoogle Scholar
  29. 29.
    Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.PubMedCrossRefGoogle Scholar
  31. 31.
    Anderson, G. L., Limacher, M., Assaf, A. R., Bassford, T., Beresford, S. A., Black, H., et al. (2004). Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA, 291, 1701–1712.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, M., Wang, Y., Abarbanell, A., Tan, J., Weil, B., Herrmann, J., et al. (2009). Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery, 146, 138–144.PubMedCrossRefGoogle Scholar
  33. 33.
    Alexandersen, P., Haarbo, J., Byrjalsen, I., Lawaetz, H., & Christiansen, C. (1999). Natural androgens inhibit male atherosclerosis: A study in castrated, cholesterol-fed rabbits. Circulation Research, 84, 813–819.PubMedGoogle Scholar
  34. 34.
    Dockery, F., Bulpitt, C. J., Donaldson, M., Fernandez, S., & Rajkumar, C. (2003). The relationship between androgens and arterial stiffness in older men. Journal of the American Geriatrics Society, 51, 1627–1632.PubMedCrossRefGoogle Scholar
  35. 35.
    Hougaku, H., Fleg, J. L., Najjar, S. S., Lakatta, E. G., Harman, S. M., Blackman, M. R., et al. (2006). Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab, 290, E234–E242.PubMedCrossRefGoogle Scholar
  36. 36.
    Kang, S. M., Jang, Y., Kim, J. Y., Chung, N., Cho, S. Y., Chae, J. S., et al. (2002). Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. American Journal of Cardiology, 89, 862–864.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosano, G. M., Leonardo, F., Pagnotta, P., Pelliccia, F., Panina, G., Cerquetani, E., et al. (1999). Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation, 99, 1666–1670.PubMedGoogle Scholar
  38. 38.
    Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRefGoogle Scholar
  39. 39.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.PubMedCrossRefGoogle Scholar
  41. 41.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.PubMedCrossRefGoogle Scholar
  42. 42.
    Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42, 792–803.PubMedCrossRefGoogle Scholar
  43. 43.
    Li, B., Sharpe, E. E., Maupin, A. B., Teleron, A. A., Pyle, A. L., Carmeliet, P., et al. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB Journal, 20, 1495–1497.PubMedCrossRefGoogle Scholar
  44. 44.
    Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.PubMedCrossRefGoogle Scholar
  45. 45.
    Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.PubMedCrossRefGoogle Scholar
  46. 46.
    Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88, 167–174.PubMedGoogle Scholar
  47. 47.
    Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.PubMedCrossRefGoogle Scholar
  48. 48.
    Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.PubMedCrossRefGoogle Scholar
  49. 49.
    Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.PubMedGoogle Scholar
  50. 50.
    Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45, 530–544.PubMedCrossRefGoogle Scholar
  51. 51.
    Kang, H. J., Kim, H. S., Zhang, S. Y., Park, K. W., Cho, H. J., Koo, B. K., et al. (2004). Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet, 363, 751–756.PubMedCrossRefGoogle Scholar
  52. 52.
    Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348, 593–600.PubMedCrossRefGoogle Scholar
  53. 53.
    Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353, 999–1007.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42, 2073–2080.PubMedCrossRefGoogle Scholar
  55. 55.
    Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., et al. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106, 2781–2786.PubMedCrossRefGoogle Scholar
  56. 56.
    Loomans, C. J., de Koning, E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., de Boer, H. C., et al. (2004). Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53, 195–199.PubMedCrossRefGoogle Scholar
  57. 57.
    Simper, D., Wang, S., Deb, A., Holmes, D., McGregor, C., Frantz, R., et al. (2003). Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation, 108, 143–149.PubMedCrossRefGoogle Scholar
  58. 58.
    George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. European Heart Journal, 25, 1003–1008.PubMedCrossRefGoogle Scholar
  59. 59.
    Choi, J. H., Kim, K. L., Huh, W., Kim, B., Byun, J., Suh, W., et al. (2004). Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1246–1252.PubMedCrossRefGoogle Scholar
  60. 60.
    Imanishi, T., Moriwaki, C., Hano, T., & Nishio, I. (2005). Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. Journal of Hypertension, 23, 1831–1837.PubMedCrossRefGoogle Scholar
  61. 61.
    Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., et al. (2005). Endothelial progenitor cells during cerebrovascular disease. Stroke, 36, 151–153.PubMedCrossRefGoogle Scholar
  62. 62.
    Iwakura, A., Luedemann, C., Shastry, S., Hanley, A., Kearney, M., Aikawa, R., et al. (2003). Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation, 108, 3115–3121.PubMedCrossRefGoogle Scholar
  63. 63.
    Strehlow, K., Werner, N., Berweiler, J., Link, A., Dirnagl, U., Priller, J., et al. (2003). Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation, 107, 3059–3065.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao, X., Huang, L., Yin, Y., Fang, Y., Zhao, J., & Chen, J. (2008). Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvascular Research, 75, 45–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Iwakura, A., Shastry, S., Luedemann, C., Hamada, H., Kawamoto, A., Kishore, R., et al. (2006). Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 113, 1605–1614.PubMedCrossRefGoogle Scholar
  66. 66.
    Fontaine, V., Filipe, C., Werner, N., Gourdy, P., Billon, A., Garmy-Susini, B., et al. (2006). Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. American Journal of Pathology, 169, 1855–1862.PubMedCrossRefGoogle Scholar
  67. 67.
    Rousseau, A., Ayoubi, F., Deveaux, C., Charbit, B., Delmau, C., Christin-Maitre, S., et al. (2009). Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects. Fertility and Sterility (in press).Google Scholar
  68. 68.
    Lemieux, C., Cloutier, I., & Tanguay, J. F. (2009). Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection? International Journal of Cardiology, 136, 200–210.PubMedCrossRefGoogle Scholar
  69. 69.
    Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 997–1004.PubMedCrossRefGoogle Scholar
  70. 70.
    Hoetzer, G. L., MacEneaney, O. J., Irmiger, H. M., Keith, R., Van Guilder, G. P., Stauffer, B. L., et al. (2007). Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. American Journal of Cardiology, 99, 46–48.PubMedCrossRefGoogle Scholar
  71. 71.
    Foresta, C., Caretta, N., Lana, A., De Toni, L., Biagioli, A., Ferlin, A., et al. (2006). Reduced number of circulating endothelial progenitor cells in hypogonadal men. Journal of Clinical Endocrinology and Metabolism, 91, 4599–4602.PubMedCrossRefGoogle Scholar
  72. 72.
    Foresta, C., Zuccarello, D., De Toni, L., Garolla, A., Caretta, N., & Ferlin, A. (2008). Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clinical Endocrinology (Oxford), 68, 284–289.Google Scholar
  73. 73.
    Fadini, G. P., Albiero, M., Cignarella, A., Bolego, C., Pinna, C., Boscaro, E., et al. (2009). Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clinical Science (London), 117, 355–364.CrossRefGoogle Scholar
  74. 74.
    Kim, S. W., Hwang, J. H., Cheon, J. M., Park, N. S., Park, S. E., Park, S. J., et al. (2005). Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. Journal of Korean Medical Science, 20, 409–416.PubMedCrossRefGoogle Scholar
  75. 75.
    Garolla, A., D’Inca, R., Checchin, D., Biagioli, A., De Toni, L., Nicoletti, V., et al. (2009). Reduced endothelial progenitor cell number and function in inflammatory bowel disease: A possible link to the pathogenesis. American Journal of Gastroenterology, 104, 2500–2507.PubMedCrossRefGoogle Scholar
  76. 76.
    Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Crisostomo, P. R., Markel, T. A., Wang, Y., & Meldrum, D. R. (2008). Surgically relevant aspects of stem cell paracrine effects. Surgery, 143, 577–581.PubMedCrossRefGoogle Scholar
  79. 79.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRefGoogle Scholar
  80. 80.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.PubMedCrossRefGoogle Scholar
  81. 81.
    Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.PubMedCrossRefGoogle Scholar
  82. 82.
    Crisostomo, P. R., Wang, M., Herring, C. M., Morrell, E. D., Seshadri, P., Meldrum, K. K., et al. (2006). Sex dimorphisms in activated mesenchymal stem cell function. Shock, 26, 571–574.PubMedCrossRefGoogle Scholar
  83. 83.
    Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., Ni, W., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.PubMedCrossRefGoogle Scholar
  84. 84.
    Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577–R595.PubMedGoogle Scholar
  85. 85.
    Crisostomo, P. R., Markel, T. A., Wang, M., Lahm, T., Lillemoe, K. D., & Meldrum, D. R. (2007). In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery, 142, 215–221.PubMedCrossRefGoogle Scholar
  86. 86.
    Erwin, G. S., Crisostomo, P. R., Wang, Y., Wang, M., Markel, T. A., Guzman, M., et al. (2009). Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. Journal of Surgical Research, 152, 319–324.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang, M., Tan, J., Coffey, A., Fehrenbacher, J., Weil, B. R., & Meldrum, D. R. (2009). Signal transducer and activator of transcription 3-stimulated hypoxia inducible factor-1alpha mediates estrogen receptor-alpha-induced mesenchymal stem cell vascular endothelial growth factor production. Journal of Thoracic and Cardiovascular Surgery, 138, 163–171, 171 e161.PubMedCrossRefGoogle Scholar
  88. 88.
    Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.PubMedGoogle Scholar
  89. 89.
    Wang, M., Zhang, W., Crisostomo, P., Markel, T., Meldrum, K. K., Fu, X. Y., et al. (2007). STAT3 mediates bone marrow mesenchymal stem cell VEGF production. Journal of Molecular and Cellular Cardiology, 42, 1009–1015.PubMedCrossRefGoogle Scholar
  90. 90.
    Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.PubMedCrossRefGoogle Scholar
  91. 91.
    Platt, D. H., Bartoli, M., El-Remessy, A. B., Al-Shabrawey, M., Lemtalsi, T., Fulton, D., et al. (2005). Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 39, 1353–1361.PubMedCrossRefGoogle Scholar
  92. 92.
    Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., et al. (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 24, 5552–5560.PubMedCrossRefGoogle Scholar
  93. 93.
    Gao, H., Bryzgalova, G., Hedman, E., Khan, A., Efendic, S., Gustafsson, J. A., et al. (2006). Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: A possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Molecular Endocrinology, 20, 1287–1299.PubMedCrossRefGoogle Scholar
  94. 94.
    Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H., & Han, H. J. (2009). Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt, and MAPKs. American Journal of Physiology. Cell Physiology, 296, C317–C326.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou, S., Turgeman, G., Harris, S. E., Leitman, D. C., Komm, B. S., Bodine, P. V., et al. (2003). Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Molecular Endocrinology, 17, 56–66.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang, M., Tsai, B. M., Crisostomo, P. R., & Meldrum, D. R. (2006). Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation, 114, I282–I289.PubMedCrossRefGoogle Scholar
  97. 97.
    Crisostomo, P. R., Wang, M., Herring, C. M., Markel, T. A., Meldrum, K. K., Lillemoe, K. D., et al. (2007). Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: Role of the 55 kDa TNF receptor (TNFR1). Journal of Molecular and Cellular Cardiology, 42, 142–149.PubMedCrossRefGoogle Scholar
  98. 98.
    Markel, T. A., Crisostomo, P. R., Wang, M., Wang, Y., Lahm, T., Novotny, N. M., et al. (2008). TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1124–R1130.PubMedGoogle Scholar
  99. 99.
    DiSilvio, L., Jameson, J., Gamie, Z., Giannoudis, P. V., & Tsiridis, E. (2006). In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury, 37(Suppl 3), S33–S42.PubMedCrossRefGoogle Scholar
  100. 100.
    Hong, L., Colpan, A., & Peptan, I. A. (2006). Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Engineering, 12, 2747–2753.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhou, S., Zilberman, Y., Wassermann, K., Bain, S. D., Sadovsky, Y., & Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. Journal of Cellular Biochemistry. Supplement, Suppl 36, 144–155.PubMedCrossRefGoogle Scholar
  102. 102.
    Cha, Y., Kwon, S. J., Seol, W., & Park, K. S. (2008). Estrogen receptor-alpha mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Molecules and Cells, 26, 454–458.PubMedGoogle Scholar
  103. 103.
    Ray, R., Herring, C. M., Markel, T. A., Crisostomo, P. R., Wang, M., Weil, B., et al. (2008). Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1498–R1503.PubMedGoogle Scholar
  104. 104.
    Min, J. Y., Yang, Y., Sullivan, M. F., Ke, Q., Converso, K. L., Chen, Y., et al. (2003). Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. Journal of Thoracic and Cardiovascular Surgery, 125, 361–369.PubMedCrossRefGoogle Scholar
  105. 105.
    Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.PubMedCrossRefGoogle Scholar
  106. 106.
    Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.PubMedCrossRefGoogle Scholar
  107. 107.
    Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.PubMedCrossRefGoogle Scholar
  108. 108.
    Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.PubMedCrossRefGoogle Scholar
  109. 109.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRefGoogle Scholar
  110. 110.
    Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.PubMedCrossRefGoogle Scholar
  111. 111.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.PubMedCrossRefGoogle Scholar
  112. 112.
    Hong, S. H., Nah, H. Y., Lee, Y. J., Lee, J. W., Park, J. H., Kim, S. J., et al. (2004). Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Molecules and Cells, 18, 320–325.PubMedGoogle Scholar
  113. 113.
    Han, H. J., Heo, J. S., & Lee, Y. J. (2006). Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: Involvement of MAPKs and CDKs as well as protooncogenes. American Journal of Physiology. Cell Physiology, 290, C1067–C1075.PubMedCrossRefGoogle Scholar
  114. 114.
    Chang, C. Y., Hsuuw, Y. D., Huang, F. J., Shyr, C. R., Chang, S. Y., Huang, C. K., et al. (2006). Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertility and Sterility, 85(Suppl 1), 1195–1203.PubMedCrossRefGoogle Scholar
  115. 115.
    Goldman-Johnson, D. R., de Kretser, D. M., & Morrison, J. R. (2008). Evidence that androgens regulate early developmental events, prior to sexual differentiation. Endocrinology, 149, 5–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behfar, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells, 26, 387–400.PubMedCrossRefGoogle Scholar
  117. 117.
    Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26, 1464–1473.PubMedCrossRefGoogle Scholar
  118. 118.
    Keaney, J. F., Jr., Shwaery, G. T., Xu, A., Nicolosi, R. J., Loscalzo, J., Foxall, T. L., et al. (1994). 17beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation, 89, 2251–2259.PubMedGoogle Scholar
  119. 119.
    Moskowitz, M. S., Moskowitz, A. A., Bradford, W. L., Jr., & Wissler, R. W. (1956). Changes in serum lipids and coronary arteries of the rat in response to estrogens. AMA Archives of Pathology, 61, 245–263.Google Scholar
  120. 120.
    Adams, M. R., Kaplan, J. R., Manuck, S. B., Koritnik, D. R., Parks, J. S., Wolfe, M. S., et al. (1990). Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys: Lack of an effect of added progesterone. Arteriosclerosis, 10, 1051–1057.PubMedGoogle Scholar
  121. 121.
    Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526.PubMedCrossRefGoogle Scholar
  122. 122.
    Bath, P. M., Hassall, D. G., Gladwin, A. M., Palmer, R. M., & Martin, J. F. (1991). Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arteriosclerosis and Thrombosis, 11, 254–260.PubMedGoogle Scholar
  123. 123.
    Radomski, M. W., Palmer, R. M., & Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet, 2, 1057–1058.PubMedCrossRefGoogle Scholar
  124. 124.
    Lahm, T., Patel, K. M., Crisostomo, P. R., Markel, T. A., Wang, M., Herring, C., et al. (2007). Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: The effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab, 293, E865–E871.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeremy L. Herrmann
    • 2
  • Aaron M. Abarbanell
    • 2
  • Brent R. Weil
    • 2
  • Mariuxi C. Manukyan
    • 2
  • Jeffrey A. Poynter
    • 2
  • Yue Wang
    • 2
  • Arthur C. Coffey
    • 1
  • Daniel R. Meldrum
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Clarian Cardiovascular Surgery, Methodist HospitalIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of SurgeryIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisUSA
  4. 4.Center for ImmunobiologyIndiana University School of MedicineIndianapolisUSA
  5. 5.IndianapolisUSA

Personalised recommendations