Advertisement

COMPARE-AMI Trial: Comparison of Intracoronary Injection of CD133+ Bone Marrow Stem Cells to Placebo in Patients After Acute Myocardial Infarction and Left Ventricular Dysfunction: Study Rationale and Design

  • Samer Mansour
  • Denis-Claude Roy
  • Vincent Bouchard
  • Ba Khoi Nguyen
  • Louis Mathieu Stevens
  • Francois Gobeil
  • Alain Rivard
  • Guy Leclerc
  • François Reeves
  • Nicolas Noiseux
Article

Abstract

Stem cell therapy has emerged as a promising approach to improve healing of the infarcted myocardium, to treat or prevent cardiac failure, and to restore lost cardiac function. Despite initial excitement, recent clinical trials using nonhomogenous human stem cells preparations showed variable results, raising concerns about the best cell type to transplant. Selected CD133+ hematopoietic stem cells are promising candidate cells with great potential. COMPARE-acute myocardial infarction (AMI) study is a phase II, randomized, double-blind, placebo-controlled trial evaluating the safety and effectiveness of intracoronary CD133+-enriched hematopoietic bone marrow stem cells in patients with acute myocardial infarction and persistent left ventricular dysfunction. Patients who underwent successful percutaneous coronary intervention and present a persistent left ventricular ejection fraction <50% will be eligible to have bone marrow aspiration and randomized for intracoronary injection of selected CD 133+ bone marrow cells vs placebo. The primary end point is a composite of a safety and efficacy end points evaluating the change at 4 months in the coronary atherosclerotic burden progression proximal and distal to the coronary stent in the infarct related artery; and the change in global left ventricular ejection fraction at 4 months relative to baseline as measured by magnetic resonance imaging. The secondary end point will be the occurrence of a major adverse cardiac event. To date, 14 patients were successfully randomized and treated without any protocol-related complication. COMPARE-AMI trial will help identify the effect of a selected population of the bone marrow stem cells on cardiac recovery of infarcted myocardium.

Keywords

Stem Cells Cellular Therapy Myocardial Infarct Heart Failure 

Notes

Acknowledgments

Dr Lemieux Bernard, Hematologist, CHUM; Dr Ouellette Caroline, Anesthesiologist, CHUM; research coordinators in cardiology Mrs Duclos Renée and Lemay Carole, technicians of the catheterization laboratory in the CHUM, technicians of the Cellular Therapy Laboratory at Maisonneuve-Rosemeont Hospital, Research Center of the CHUM (CRCHUM), Fonds de la recherche en santé du Québec, Miltenyi Biotec, and Boston Scientific in Canada.

Ethical standards

The study has been approved by Health Canada and by the IRB/Ethical committee of the research center in the CHUM.

Conflict of interest

No conflict to disclose.

References

  1. 1.
    Ertl, G., Gaudron, P., & Hu, K. (1993). Ventricular remodeling after myocardial infarction: experimental and clinical studies. Basic Research in Cardiology, 88, 125–137.PubMedGoogle Scholar
  2. 2.
    Pfeffer, M. A. & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction: experimental observation and clinical implications. Circulation, 81, 1161–1172.PubMedGoogle Scholar
  3. 3.
    Towbin, J. A. & Bowles, N. E. (2002). The failing heart. Nature, 415, 227–233.CrossRefPubMedGoogle Scholar
  4. 4.
    Leor, J., Patterson, M., Quinones, M. J., Kedes, L. H., Kloner, R. A., et al. (1996). Transplantation of fetal myocardial tissue into infarcted myocardium of rat: a potential method for repair of infracted myocardium? Circulation, 94(Suppl II), 332–336.Google Scholar
  5. 5.
    Menasche, P., Hagege, A. A., Scorsin, M., et al. (2001). Myoblast transplantation for heart failure. Lancet, 357, 279–280.CrossRefPubMedGoogle Scholar
  6. 6.
    Menasche, P., Hgege, A. A., Vilquin, J.-T., Pouzet, B., Desnos, M., Duboc, D., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41, 1078–1083.CrossRefPubMedGoogle Scholar
  7. 7.
    Murry, C. E., Wiseman, R. W., Schwartz, S. M., Hauschka, S. D., et al. (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. Journal of Clinical Investigation, 98, 2512–2523.CrossRefPubMedGoogle Scholar
  8. 8.
    Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Medicine, 4, 929–933.CrossRefPubMedGoogle Scholar
  9. 9.
    Perin, E. C., Geng, Y. J., & Willerson, J. T. (2003). Adult stem cell therapy in perspective. Circulation, 107, 935–938.CrossRefPubMedGoogle Scholar
  10. 10.
    Siminiak, T. & Kurpisz, M. (2003). Myocardial replacement therapy. Circulation, 108, 1167–1171.CrossRefPubMedGoogle Scholar
  11. 11.
    Tomita, S., Li, R.-K., Weisel, R. D., Micjke, D. A. G., Kim, E. J., & Sakai, T. (1999). Autologous transplantation of bone marrow cells improve damaged heart function. Circulation, 100(Suppl 1), II 247–II 256.Google Scholar
  12. 12.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.CrossRefPubMedGoogle Scholar
  13. 13.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMedGoogle Scholar
  14. 14.
    Orlic, D., Hill, J. M., & Arai, A. E. (2002). Stem cells for cardiac regeneration. Circulation Research, 91, 1092–1102.CrossRefPubMedGoogle Scholar
  15. 15.
    Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.CrossRefPubMedGoogle Scholar
  16. 16.
    Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., Robbins, R. C., et al. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischemic myocardium. Nature, 428, 668–673.CrossRefPubMedGoogle Scholar
  17. 17.
    Murry, C. E., Soopa, M. H., Reinecke, H., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, S., Wang, D., Estrov, Z., Raj, S., Willerson, J. T., Yeh, E. T., et al. (2004). Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation, 110, 3803–3807.CrossRefPubMedGoogle Scholar
  19. 19.
    Kinnaird, T., Stabile, E., Burnett, S. E., Shou, M., Lee, C. W., Barr, S., et al. (2004). Local delivery of marrow derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549.CrossRefPubMedGoogle Scholar
  20. 20.
    Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S. D., Deb, A., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14(6), 840–850.CrossRefPubMedGoogle Scholar
  21. 21.
    Assmus, B., Scharinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106, 3009–3017.CrossRefPubMedGoogle Scholar
  22. 22.
    Britten, M., Abolmaali, N. D., Assmus, B., Lehmann, R., Honold, J., Schmitt, J., et al. (2003). Infarct remodeling following intracoronary progenitor cells treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation, 108, 2212–2218.CrossRefPubMedGoogle Scholar
  23. 23.
    Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., Fernandez, M. E., Penarrubia, M. J., de la Fuente, L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95, 742–748.CrossRefPubMedGoogle Scholar
  24. 24.
    Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., Egeland, T., et al. (2006). Intracoronary injection of mononuclear cells in acute myocardial infarction. New England Journal of Medicine, 355, 1199–1209.CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer, G. P., Wollert, K. C., Lotz, J., Pirr, J., Rager, U., Lippolt, P., Hahn, A., Fichtner, S., Schaefer, A., Arseniev, L., Ganser, A., & Drexler, H. (2009). Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. European Heart Journal, (Sep 22).Google Scholar
  26. 26.
    Schächinger, V., Assmuss, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI) 1 year follow-up. JACC, 44(8).Google Scholar
  27. 27.
    Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Holschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355, 1210–1221.CrossRefPubMedGoogle Scholar
  28. 28.
    Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet, 364, 141–148.CrossRefPubMedGoogle Scholar
  29. 29.
    Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Archives of Internal Medicine, 167(10), 989–997.CrossRefPubMedGoogle Scholar
  30. 30.
    Lipinski, M. J., Biondi-Zoccai, G. G. L., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction. JACC, 50, 1761–1767.PubMedGoogle Scholar
  31. 31.
    Martin-Rendon, E., Brunskill, S. J., Hyde, C. J., Stanworth, S. J., Mathur, A., Watt, S. M., et al. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systemic review. European Heart Journal, 29, 1807–1818.CrossRefPubMedGoogle Scholar
  32. 32.
    Yousef, M., Schannwell, C. M., Köstering, M., Zeus, T., Brehm, M., Strauer, B. E., et al. (2009). The BALANCE study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53(24), 2262–2269.CrossRefPubMedGoogle Scholar
  33. 33.
    Menasche, P. (2009). Cell-based therapy for heart disease: A clinically oriented perspective. Molecular Therapy, 17(5), 758–766.CrossRefPubMedGoogle Scholar
  34. 34.
    Bhatia, M. (2001). AC133 expression in human stem cells. Leukemia, 15, 1685–1688.PubMedGoogle Scholar
  35. 35.
    DeWynter, E. A., Buck, D., Hart, C., Heywood, R., Coutinho, L. H., Clayton, A., et al. (1998). CD34+AC133+ cells isolated from cord blood are highly enriched in long term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells, 16, 387–396.CrossRefGoogle Scholar
  36. 36.
    Kuci, S., Wessels, J. T., Buhring, H. J., Schilbach, K., Schumm, M., Seitz, G., et al. (2003). Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells. Blood, 101, 869–876.CrossRefPubMedGoogle Scholar
  37. 37.
    Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P., Deliliers, G. L., et al. (2001). Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. British Journal of Hematology, 115, 180–194.CrossRefGoogle Scholar
  38. 38.
    Bartunek, J., Vanderheyden, M., Vandekerckhove, B., Mansour, S., De Bruyne, B., De Bondt, P., et al. (2005). Selected intracoronary CD 133+ bone marrow cells promote cardiac regeneration after acute myocardial infarction. Circulation, 112(Suppl I), I-178–I-183.Google Scholar
  39. 39.
    Dimmeler, S. & Zeiher, A. M. (2009). Cell therapy of acute myocardial infarction: open questions. Cardiology, 113, 155–160.CrossRefPubMedGoogle Scholar
  40. 40.
    Traverse, J. H. & Henry, T. D. (2008). Cell therapy for acute myocardial infarction—where do we go from here? Journal of Cardiovascular Translational Research, 1, 64–70.CrossRefGoogle Scholar
  41. 41.
    Bartunek, J., Sherman, W., Vanderheyden, M., Fernandez-Aviles, F., Wijns, W., & Terzic, A. (2009). Delivery of biologics in cardiovascular regenerative medicine. Clinical Pharmacology and Therapeutics, 85(5), 548–552.CrossRefPubMedGoogle Scholar
  42. 42.
    Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.CrossRefPubMedGoogle Scholar
  43. 43.
    Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., et al. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361(9351), 45–46.CrossRefPubMedGoogle Scholar
  44. 44.
    Agbulut, O., Vandervelde, S., Al Attar, N., Larghero, J., Ghostine, S., Leobon, B., et al. (2004). Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. Journal of the American College of Cardiology, 44(2), 458–463.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Samer Mansour
    • 1
    • 4
  • Denis-Claude Roy
    • 2
  • Vincent Bouchard
    • 5
  • Ba Khoi Nguyen
    • 3
    • 4
  • Louis Mathieu Stevens
    • 3
    • 4
  • Francois Gobeil
    • 1
  • Alain Rivard
    • 1
    • 4
  • Guy Leclerc
    • 1
  • François Reeves
    • 1
    • 4
  • Nicolas Noiseux
    • 3
    • 4
  1. 1.Cardiology DepartmentCentre Hospitalier de l’Université de Montréal (CHUM)MontrealCanada
  2. 2.Department of HematologyHôpital Maisonneuve-Rosemont (HMR)MontrealCanada
  3. 3.Division of Cardiac SurgeryCentre Hospitalier de l’Université de Montréal (CHUM)MontréalCanada
  4. 4.Centre de Recherche du CHUM (CRCHUM)MontrealCanada
  5. 5.School of MedicineMontreal UniversityMontrealCanada

Personalised recommendations