Journal of Cardiovascular Translational Research

, Volume 2, Issue 4, pp 426–440 | Cite as

Insights into Human β-Cardiac Myosin Function from Single Molecule and Single Cell Studies

  • Sivaraj Sivaramakrishnan
  • Euan Ashley
  • Leslie Leinwand
  • James A. Spudich


β-Cardiac myosin is a mechanoenzyme that converts the energy from ATP hydrolysis into a mechanical force that drives contractility in muscle. Thirty percent of the point mutations that result in hypertrophic cardiomyopathy are localized to MYH7, the gene encoding human β-cardiac myosin heavy chain (β-MyHC). Force generation by myosins requires a tight and highly conserved allosteric coupling between its different protein domains. Hence, the effects of single point mutations on the force generation and kinetics of β-cardiac myosin molecules cannot be predicted directly from their location within the protein structure. Great insight would be gained from understanding the link between the functional defect in the myosin protein and the clinical phenotypes of patients expressing them. Over the last decade, several single molecule techniques have been developed to understand in detail the chemomechanical cycle of different myosins. In this review, we highlight the single molecule techniques that can be used to assess the effect of point mutations on β-cardiac myosin function. Recent bioengineering advances have enabled the micromanipulation of single cardiomyocyte cells to characterize their force–length dynamics. Here, we briefly review single cell micromanipulation as an approach to determine the effect of β-MyHC mutations on cardiomyocyte function. Finally, we examine the technical challenges specific to studying β-cardiac myosin function both using single molecule and single cell approaches.


Hypertrophic Cardiomyopathy Single Molecule Analysis Cardiac Myosin 


  1. 1.
    Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92(4), 785–789.PubMedGoogle Scholar
  2. 2.
    Maron, B. J. (2002). Hypertrophic cardiomyopathy: A systematic review. JAMA, 287(10), 1308–1320.CrossRefPubMedGoogle Scholar
  3. 3.
    Liew, C. C., & Dzau, V. J. (2004). Molecular genetics and genomics of heart failure. Nature Reviews. Genetics, 5(11), 811–825.CrossRefPubMedGoogle Scholar
  4. 4.
    Ramaraj, R. (2008). Hypertrophic cardiomyopathy: etiology, diagnosis, and treatment. Cardiology in Review, 16(4), 172–180.CrossRefPubMedGoogle Scholar
  5. 5.
    Kron, S. J., & Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America, 83(17), 6272–6276.CrossRefPubMedGoogle Scholar
  6. 6.
    Sheetz, M. P., & Spudich, J. A. (1983). Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature, 303(5912), 31–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Spudich, J. A., Kron, S. J., & Sheetz, M. P. (1985). Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature, 315(6020), 584–586.CrossRefPubMedGoogle Scholar
  8. 8.
    Lymn, R. W. (1979). Kinetic analysis of myosin and actomyosin atpase. Annual Review of Biophysics and Bioengineering, 8, 145–163.CrossRefPubMedGoogle Scholar
  9. 9.
    Uyeda, T. Q., Kron, S. J., & Spudich, J. A. (1990). Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. Journal of Molecular Biology, 214(3), 699–710.CrossRefPubMedGoogle Scholar
  10. 10.
    Toyoshima, Y. Y., Kron, S. J., & Spudich, J. A. (1990). The myosin step size: Measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7130–7134.CrossRefPubMedGoogle Scholar
  11. 11.
    Ishijima, A., Harada, Y., Kojima, H., Funatsu, T., Higuchi, H., & Yanagida, T. (1994). Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochemical and Biophysical Research Communications, 199(2), 1057–1063.CrossRefPubMedGoogle Scholar
  12. 12.
    Yanagida, T., Arata, T., & Oosawa, F. (1985). Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature, 316(6026), 366–369.CrossRefPubMedGoogle Scholar
  13. 13.
    Finer, J. T., Simmons, R. M., & Spudich, J. A. (1994). Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature, 368(6467), 113–119.CrossRefPubMedGoogle Scholar
  14. 14.
    Wolenski, J. S., Cheney, R. E., Forscher, P., & Mooseker, M. S. (1993). In vitro motilities of the unconventional myosins, brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity. Journal of Experimental Zoology, 267(1), 33–39.CrossRefPubMedGoogle Scholar
  15. 15.
    Bryant, Z., Altman, D., & Spudich, J. A. (2007). The power stroke of myosin VI and the basis of reverse directionality. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 772–777.CrossRefPubMedGoogle Scholar
  16. 16.
    Post, P. L., Tyska, M. J., O'Connell, C. B., Johung, K., Hayward, A., & Mooseker, M. S. (2002). Myosin-IXb is a single-headed and processive motor. Journal of Biological Chemistry, 277(14), 11679–11683.CrossRefPubMedGoogle Scholar
  17. 17.
    Homma, K., Saito, J., Ikebe, R., & Ikebe, M. (2001). Motor function and regulation of myosin X. Journal of Biological Chemistry, 276(36), 34348–34354.CrossRefPubMedGoogle Scholar
  18. 18.
    Yamashita, H., Sugiura, S., Serizawa, T., Sugimoto, T., Iizuka, M., Katayama, E., et al. (1992). Sliding velocity of isolated rabbit cardiac myosin correlates with isozyme distribution. American Journal of Physiology, 263(2 Pt 2), H464–H472.PubMedGoogle Scholar
  19. 19.
    Yamashita, H., Sugiura, S., Sata, M., Serizawa, T., Iizuka, M., Shimmen, T., et al. (1993). Depressed sliding velocity of isolated cardiac myosin from cardiomyopathic hamsters: evidence for an alteration in mechanical interaction of actomyosin. Molecular and Cellular Biochemistry, 119(1–2), 79–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Barany, M., Conover, T. E., Schliselfeld, L. H., Gaetjens, E., & Goffart, M. (1967). Relation of properties of isolated myosin to those of intact muscles of the cat and sloth. European Journal of Biochemistry, 2(2), 156–164.CrossRefPubMedGoogle Scholar
  21. 21.
    Cuda, G., Fananapazir, L., Zhu, W. S., Sellers, J. R., & Epstein, N. D. (1993). Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. Journal of Clinical Investigation, 91(6), 2861–2865.CrossRefPubMedGoogle Scholar
  22. 22.
    Epstein, N. D., Fananapazir, L., Lin, H. J., Mulvihill, J., White, R., Lalouel, J. M., et al. (1992). Evidence of genetic heterogeneity in five kindreds with familial hypertrophic cardiomyopathy. Circulation, 85(2), 635–647.PubMedGoogle Scholar
  23. 23.
    Cuda, G., Fananapazir, L., Epstein, N. D., & Sellers, J. R. (1997). The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. Journal of Muscle Research and Cell Motility, 18(3), 275–283.CrossRefPubMedGoogle Scholar
  24. 24.
    Palmiter, K. A., Tyska, M. J., Haeberle, J. R., Alpert, N. R., Fananapazir, L., & Warshaw, D. M. (2000). R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. Journal of Muscle Research and Cell Motility, 21(7), 609–620.CrossRefPubMedGoogle Scholar
  25. 25.
    Palmer, B. M., Fishbaugher, D. E., Schmitt, J. P., Wang, Y., Alpert, N. R., Seidman, C. E., et al. (2004). Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 287(1), H91–H99.CrossRefPubMedGoogle Scholar
  26. 26.
    Keller, D. I., Coirault, C., Rau, T., Cheav, T., Weyand, M., Amann, K., et al. (2004). Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. Journal of Molecular and Cellular Cardiology, 36(3), 355–362.CrossRefPubMedGoogle Scholar
  27. 27.
    Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A., & Faust, L. (1994). Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. Journal of Biological Chemistry, 269(3), 1603–1605.PubMedGoogle Scholar
  28. 28.
    Malmqvist, U. P., Aronshtam, A., & Lowey, S. (2004). Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry, 43(47), 15058–15065.CrossRefPubMedGoogle Scholar
  29. 29.
    Shaw, T., Elliott, P., & McKenna, W. J. (2002). Dilated cardiomyopathy: a genetically heterogeneous disease. Lancet, 360(9334), 654–655.CrossRefPubMedGoogle Scholar
  30. 30.
    Schmitt, J. P., Debold, E. P., Ahmad, F., Armstrong, A., Frederico, A., Conner, D. A., et al. (2006). Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14525–14530.CrossRefPubMedGoogle Scholar
  31. 31.
    Kurabayashi, M., Tsuchimochi, H., Komuro, I., Takaku, F., & Yazaki, Y. (1988). Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. Journal of Clinical Investigation, 82(2), 524–531.CrossRefPubMedGoogle Scholar
  32. 32.
    Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. Journal of Biological Chemistry, 283(29), 20579–20589.CrossRefPubMedGoogle Scholar
  33. 33.
    Ng, W. A., Grupp, I. L., Subramaniam, A., & Robbins, J. (1991). Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circulation Research, 68(6), 1742–1750.PubMedGoogle Scholar
  34. 34.
    Umeda, P. K., Darling, D. S., Kennedy, J. M., Jakovcic, S., & Zak, R. (1987). Control of myosin heavy chain expression in cardiac hypertrophy. American Journal of Cardiology, 59(2), 49A–55A.CrossRefPubMedGoogle Scholar
  35. 35.
    Morkin, E. (2000). Control of cardiac myosin heavy chain gene expression. Microscopy Research and Technique, 50(6), 522–531.CrossRefPubMedGoogle Scholar
  36. 36.
    De La Cruz, E. M., & Ostap, E. M. (2009). Kinetic and equilibrium analysis of the myosin ATPase. Methods in Enzymology, 455, 157–192.CrossRefGoogle Scholar
  37. 37.
    Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., & Spudich, J. A. (2005). Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1419–1423.CrossRefPubMedGoogle Scholar
  38. 38.
    De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M., & Sweeney, H. L. (1999). The kinetic mechanism of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13726–13731.CrossRefGoogle Scholar
  39. 39.
    Dunn, A. R., & Spudich, J. A. (2007). Dynamics of the unbound head during myosin V processive translocation. Nature Structural & Molecular Biology, 14(3), 246–248.CrossRefGoogle Scholar
  40. 40.
    Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D., & Sellers, J. R. (2008). Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature, 455(7209), 128–132.CrossRefPubMedGoogle Scholar
  41. 41.
    Yildiz, A., & Selvin, P. R. (2005). Fluorescence imaging with one nanometer accuracy: Application to molecular motors. Accounts of Chemical Research, 38(7), 574–582.CrossRefPubMedGoogle Scholar
  42. 42.
    Trybus, K. M. (2008). Myosin V from head to tail. Cellular and Molecular Life Sciences, 65(9), 1378–1389.CrossRefPubMedGoogle Scholar
  43. 43.
    Marston, S. B., & Taylor, E. W. (1980). Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. Journal of Molecular Biology, 139(4), 573–600.CrossRefPubMedGoogle Scholar
  44. 44.
    Spudich, J. A. (1974). Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. Journal of Biological Chemistry, 249(18), 6013–6020.PubMedGoogle Scholar
  45. 45.
    Cheney, R. E., O'Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., Espreafico, E. M., et al. (1993). Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell, 75(1), 13–23.PubMedGoogle Scholar
  46. 46.
    Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. Journal of Molecular Biology, 7, 281–308.CrossRefGoogle Scholar
  47. 47.
    Bagshaw, C. (1993). Muscle contraction (2nd ed.). London: Chapman & Hall.Google Scholar
  48. 48.
    Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., & Cheney, R. E. (1999). Myosin-V is a processive actin-based motor. Nature, 400(6744), 590–593.CrossRefPubMedGoogle Scholar
  49. 49.
    Spudich, J. A. (1990). Optical trapping: motor molecules in motion. Nature, 348(6299), 284–285.CrossRefPubMedGoogle Scholar
  50. 50.
    Sousa, A. D., & Cheney, R. E. (2005). Myosin-X: A molecular motor at the cell's fingertips. Trends in Cell Biology, 15(10), 533–539.CrossRefPubMedGoogle Scholar
  51. 51.
    Rock, R. S., Rice, S. E., Wells, A. L., Purcell, T. J., Spudich, J. A., & Sweeney, H. L. (2001). Myosin VI is a processive motor with a large step size. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13655–13659.CrossRefPubMedGoogle Scholar
  52. 52.
    Okten, Z., Churchman, L. S., Rock, R. S., & Spudich, J. A. (2004). Myosin VI walks hand-over-hand along actin. Nature Structural & Molecular Biology, 11(9), 884–887.CrossRefGoogle Scholar
  53. 53.
    Kerber, M. L., Jacobs, D. T., Campagnola, L., Dunn, B. D., Yin, T., Sousa, A. D., et al. (2009). A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Current Biology, 19(11), 967–973.CrossRefPubMedGoogle Scholar
  54. 54.
    Altman, D., Sweeney, H. L., & Spudich, J. A. (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell, 116(5), 737–749.CrossRefPubMedGoogle Scholar
  55. 55.
    Sellers, J. R., & Veigel, C. (2006). Walking with myosin V. Current Opinion in Cell Biology, 18(1), 68–73.CrossRefPubMedGoogle Scholar
  56. 56.
    Kishino, A., & Yanagida, T. (1988). Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334(6177), 74–76.CrossRefPubMedGoogle Scholar
  57. 57.
    VanBuren, P., Harris, D. E., Alpert, N. R., & Warshaw, D. M. (1995). Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circulation Research, 77(2), 439–444.PubMedGoogle Scholar
  58. 58.
    Rice, S. E., Purcell, T. J., & Spudich, J. A. (2003). Building and using optical traps to study properties of molecular motors. Methods in Enzymology, 361, 112–133.CrossRefPubMedGoogle Scholar
  59. 59.
    Huxley, H. E. (1969). The mechanism of muscular contraction. Science, 164(886), 1356–1365.CrossRefPubMedGoogle Scholar
  60. 60.
    Palmiter, K. A., Tyska, M. J., Dupuis, D. E., Alpert, N. R., & Warshaw, D. M. (1999). Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. Journal of Physiology, 519(Pt 3), 669–678.CrossRefPubMedGoogle Scholar
  61. 61.
    Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., & Warshaw, D. M. (2000). Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 86(7), 737–744.PubMedGoogle Scholar
  62. 62.
    Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., & Trybus, K. M. (2000). Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Journal of Biological Chemistry, 275(36), 28045–28052.PubMedGoogle Scholar
  63. 63.
    Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., et al. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H284–H291.CrossRefPubMedGoogle Scholar
  64. 64.
    de Tombe, P. P., & Stienen, G. J. (1995). Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circulation Research, 76(5), 734–741.PubMedGoogle Scholar
  65. 65.
    Vahebi, S., Ota, A., Li, M., Warren, C. M., de Tombe, P. P., Wang, Y., et al. (2007). p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circulation Research, 100(3), 408–415.CrossRefPubMedGoogle Scholar
  66. 66.
    Iribe, G., Helmes, M., & Kohl, P. (2007). Force–length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. American Journal of Physiology. Heart and Circulatory Physiology, 292(3), H1487–H1497.CrossRefPubMedGoogle Scholar
  67. 67.
    Sugiura, S., Nishimura, S., Yasuda, S., Hosoya, Y., & Katoh, K. (2006). Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Natural Protocol, 1(3), 1453–1457.CrossRefGoogle Scholar
  68. 68.
    Lionne, C., Iorga, B., Candau, R., & Travers, F. (2003). Why choose myofibrils to study muscle myosin ATPase? Journal of Muscle Research and Cell Motility, 24(2–3), 139–148.CrossRefPubMedGoogle Scholar
  69. 69.
    Telley, I. A., & Denoth, J. (2007). Sarcomere dynamics during muscular contraction and their implications to muscle function. Journal of Muscle Research and Cell Motility, 28(1), 89–104.CrossRefPubMedGoogle Scholar
  70. 70.
    Cooke, R. (1997). Actomyosin interaction in striated muscle. Physiological Reviews, 77(3), 671–697.PubMedGoogle Scholar
  71. 71.
    Tarr, M., Trank, J. W., Leiffer, P., & Shepherd, N. (1979). Sarcomere length-resting tension relation in single frog atrial cardiac cells. Circulation Research, 45(4), 554–559.PubMedGoogle Scholar
  72. 72.
    Brady, A. J., Tan, S. T., & Ricchiuti, N. V. (1979). Contractile force measured in unskinned isolated adult rat heart fibres. Nature, 282(5740), 728–729.CrossRefPubMedGoogle Scholar
  73. 73.
    Le Guennec, J. Y., Peineau, N., Argibay, J. A., Mongo, K. G., & Garnier, D. (1990). A new method of attachment of isolated mammalian ventricular myocytes for tension recording: Length dependence of passive and active tension. Journal of Molecular and Cellular Cardiology, 22(10), 1083–1093.CrossRefPubMedGoogle Scholar
  74. 74.
    Nishimura, S., Kawai, Y., Nakajima, T., Hosoya, Y., Fujita, H., Katoh, M., et al. (2006). Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners. Cardiovascular Research, 72(3), 403–411.CrossRefPubMedGoogle Scholar
  75. 75.
    Nishimura, S., Nagai, S., Katoh, M., Yamashita, H., Saeki, Y., Okada, J., et al. (2006). Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circulation Research, 98(1), 81–87.CrossRefPubMedGoogle Scholar
  76. 76.
    Nishimura, S., Nagai, S., Sata, M., Katoh, M., Yamashita, H., Saeki, Y., et al. (2006). Expression of green fluorescent protein impairs the force-generating ability of isolated rat ventricular cardiomyocytes. Molecular and Cellular Biochemistry, 286(1–2), 59–65.CrossRefPubMedGoogle Scholar
  77. 77.
    Nishimura, S., Seo, K., Nagasaki, M., Hosoya, Y., Yamashita, H., Fujita, H., et al. (2008). Responses of single-ventricular myocytes to dynamic axial stretching. Progress in Biophysics and Molecular Biology, 97(2–3), 282–297.CrossRefPubMedGoogle Scholar
  78. 78.
    Nishimura, S., Yamashita, H., Katoh, M., Yamada, K. P., Sunagawa, K., Saeki, Y., et al. (2005). Contractile dysfunction of cardiomyopathic hamster myocytes is pronounced under high load conditions. Journal of Molecular and Cellular Cardiology, 39(2), 231–239.CrossRefPubMedGoogle Scholar
  79. 79.
    Nishimura, S., Yasuda, S., Katoh, M., Yamada, K. P., Yamashita, H., Saeki, Y., et al. (2004). Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. American Journal of Physiology. Heart and Circulatory Physiology, 287(1), H196–H202.CrossRefPubMedGoogle Scholar
  80. 80.
    Herron, T. J., Devaney, E. J., & Metzger, J. M. (2008). Modulation of cardiac performance by motor protein gene transfer. Annals of the New York Academy of Sciences, 1123, 96–104.CrossRefPubMedGoogle Scholar
  81. 81.
    Herron, T. J., Korte, F. S., & McDonald, K. S. (2001). Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. American Journal of Physiology. Heart and Circulatory Physiology, 281(3), H1217–H1222.PubMedGoogle Scholar
  82. 82.
    Tang, Y. D., Kuzman, J. A., Said, S., Anderson, B. E., Wang, X., & Gerdes, A. M. (2005). Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation, 112(20), 3122–3130.CrossRefPubMedGoogle Scholar
  83. 83.
    Herron, T. J., Vandenboom, R., Fomicheva, E., Mundada, L., Edwards, T., & Metzger, J. M. (2007). Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circulation Research, 100(8), 1182–1190.CrossRefPubMedGoogle Scholar
  84. 84.
    Yasuda, S., Coutu, P., Sadayappan, S., Robbins, J., & Metzger, J. M. (2007). Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes. Circulation Research, 101(4), 377–386.CrossRefPubMedGoogle Scholar
  85. 85.
    Marian, A. J., Yu, Q. T., Mann, D. L., Graham, F. L., & Roberts, R. (1995). Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Circulation Research, 77(1), 98–106.PubMedGoogle Scholar
  86. 86.
    Wang, Q., Moncman, C. L., & Winkelmann, D. A. (2003). Mutations in the motor domain modulate myosin activity and myofibril organization. Journal of Cell Science, 116(Pt 20), 4227–4238.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sivaraj Sivaramakrishnan
    • 1
  • Euan Ashley
    • 2
  • Leslie Leinwand
    • 3
  • James A. Spudich
    • 1
  1. 1.Department of BiochemistryStanford UniversityStanfordUSA
  2. 2.Cardiovascular MedicineStanford UniversityStanfordUSA
  3. 3.Cardiovascular InstituteUniversity of ColoradoBoulderUSA

Personalised recommendations