Physiologic and Pathologic Changes in Patients with Continuous-Flow Ventricular Assist Devices

  • Ranjit John
  • Andrew Boyle
  • Frank Pagani
  • Leslie Miller


The clinical use of the newer continuous-flow pumps for mechanical circulatory support have resulted in superior outcomes including significantly reduced complication rates with improved durability over first generation pulsatile design pumps. However, as with all new technology, the newer LVADs have introduced a different set of management issues, as well as a unique risk profile into the mechanical circulatory support arena that were previously absent or unimportant with pulsatile LVADs. These include the effects of continuous flow on the systemic circulation and end-organ function, risk of thromboembolism, and pump thrombosis related to contact bearings in the blood path, the possible increased incidence of gastrointestinal bleeding, and ventricular arrhythmias, as well as alterations in the unloading characteristics of continuous-flow devices. This manuscript overviews the physiologic and pathologic effects that are associated with continuous-flow pumps and their unique management issues and complications.


LVAD Left Ventricular Assist Device End-Stage Heart Failure Pulsatile Devices Continuous Flow Devices 


  1. 1.
    Frazier, O. H., Rose, E. A., Oz, M. C., et al. (2001). Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. Journal of thoracic and cardiovascular surgery, 122, 1186–1195.PubMedCrossRefGoogle Scholar
  2. 2.
    Frazier, O. H., Rose, E. A., McCarthy, P., et al. (1995). Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Annals of Surgery, 222, 327–336.PubMedCrossRefGoogle Scholar
  3. 3.
    Morgan, J. A., John, R., Rao, V., et al. (2004). Bridging to transplant with the HeartMate left ventricular assist device: The Columbia Presbyterian 12-year experience. Journal of thoracic and cardiovascular surgery, 127, 1309–1316.PubMedCrossRefGoogle Scholar
  4. 4.
    Rose, E. A., Gelijns, A. C., Moskowitz, A. J., et al. (2001). Long-term mechanical left ventricular assistance for end-stage heart failure. New England Journal of Medicine, 345, 1435–1443.PubMedCrossRefGoogle Scholar
  5. 5.
    Pagani, F. D., Long, J. W., Dembitsky, W. P., et al. (2006). Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Annals of Thoracic Surgery, 82, 1413–1419.PubMedCrossRefGoogle Scholar
  6. 6.
    Feller, E. D., Sorensen, E. N., Haddad, M., et al. (2007). Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Annals of Thoracic Surgery, 83, 1082–1088.PubMedCrossRefGoogle Scholar
  7. 7.
    Frazier, O. H., Gemmato, C., Myers, T. J., et al. (2007). Initial clinical experience with the HeartMate II axial-flow left ventricular assist device. Texas Heart Institute Journal, 34, 275–281.PubMedGoogle Scholar
  8. 8.
    Miller, L. W., Pagani, F. D., Russell, S. D., et al. (2007). Use of a continuous-flow device in patients awaiting heart transplantation. New England Journal of Medicine, 357, 885–896.PubMedCrossRefGoogle Scholar
  9. 9.
    John, R., Kamdar, F., Liao, K., et al. (2008). Improved survival and decreasing incidence of adverse events using the HeartMate II left ventricular assist device as a bridge-to-transplant. Annals of Thoracic Surgery, 86, 1227–1235.PubMedCrossRefGoogle Scholar
  10. 10.
    John, R. (2008). Current axial flow pumps—HeartMate II and Jarvik LVADs. Seminars in Thoracic and Cardiovascular Surgery, 20, 264–272.PubMedCrossRefGoogle Scholar
  11. 11.
    Rose, E. A., Levin, H. R., Oz, M. C., et al. (1994). Artificial circulatory support with textured interior surfaces: a counterintuitive approach to minimize thromboembolism. Circulation, 90(5 pt 2), II87–91.PubMedGoogle Scholar
  12. 12.
    John, R., Kamdar, F., Liao, K., et al. (2008). Low thromboembolic risk with the HeartMate II left ventricular assist device. Journal of thoracic and cardiovascular surgery, 136, 1318–1323.PubMedCrossRefGoogle Scholar
  13. 13.
    Letsou, G. V., Shah, N., Gregoric, I. D., et al. (2005). Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 24, 105–109.PubMedCrossRefGoogle Scholar
  14. 14.
    Crow, S., John, R., Boyle, A., et al. (2009). Gastrointestinal bleeding rates in recipients of non-pulsatile and pulsatile left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 137, 208–215.PubMedCrossRefGoogle Scholar
  15. 15.
    Heyde, E. C. (1958). Gastrointestinal bleeding in aortic stenosis (letter). New England Journal of Medicine, 259, 196.Google Scholar
  16. 16.
    Boley, S. J., Sammarteno, R., Adams A., et al. (1977). Vascular ectasias of the colon. On the nature and etiology of vascular ectasias of the colon. Gastroenterolgy, 72, 650–660.Google Scholar
  17. 17.
    Warkentin, T. E., Moore, J. C., & Morgan, D. G. (1992). Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet, 340, 35–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Furlan, M. (1996). von Willebrand factor: molecular size and functional activity. Annals of Hematology, 72, 341–348.PubMedCrossRefGoogle Scholar
  19. 19.
    Ruggeri, Z. M. (2003). von Willebrand factor. Current Opinion in Hematology, 10, 142–149.PubMedCrossRefGoogle Scholar
  20. 20.
    Vincentelli, A., Susen, S., Le Tourneau, T., Six, I., Fabre, O., Juthier, F., et al. (2003). Acquired von Willebrand syndrome in aortic stenosis. New England Journal of Medicine, 349, 343–349.PubMedCrossRefGoogle Scholar
  21. 21.
    Geisen, U., Heilmann, C., Beyersdorf, F., et al. (2008). Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. European Journal of Cardiothoracic Surgery, 22, 679–684.CrossRefGoogle Scholar
  22. 22.
    Weslowski, S., Fisher, J., & Welch, C. (1953). Perfusion of the pulmonary circulation by non-pulsatile flow. Surgery, 33, 370.Google Scholar
  23. 23.
    Johnston, G. G., Hammill, F., Marzec, U., et al. (1976). Prolonged pulseless perfusion in unanesthetized calves. Archives of Surgery, 111, 1125–1130.Google Scholar
  24. 24.
    Saito, S., Westaby, S., Piggot, D., et al. (2002). End-organ function during chronic nonpulsatile circulation. Annals of Thoracic Surgery, 74, 1080–1085.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakata, K., Shiono, M., Orime, Y., et al. (1996). Effect of pulsatile and nonpulsatile assist on heart and kidney microcirculation with cardiogenic shock. Artificial Organs, 20, 681–684.PubMedCrossRefGoogle Scholar
  26. 26.
    Letsou, G. V., Myers, T. J., Gregoric, I. D., et al. (2003). Continuous axial-flow left ventricular assist device (Jarvik 2000) maintains kidney and liver perfusion for up to 6 months. Annals of Thoracic Surgery, 76, 1167–1170.PubMedCrossRefGoogle Scholar
  27. 27.
    Radovancevic, B., Vrtovec, B., de Kort, E., Radovancevic, R., Gregoric, I. D., & Frazier, O. H. (2007). End-organ function in patients on long-term circulatory support with continuous or pulsatile-flow assist devices. Journal of Heart Transplantation, 26(8), 815–818.CrossRefGoogle Scholar
  28. 28.
    Kamdar, F., Boyle, A., Liao, K., Colvin-Adams, M., Joyce, L., John, R. (2009). Effects of centrifugal, axial and pulsatile left ventricular assist device (LVAD) support on end-organ function in heart failure patients. Journal of Heart and Lung Transplantation (in press).Google Scholar
  29. 29.
    Klotz, S., Deng, M. C., Stymann, J., et al. (2004). Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Annals of Thoracic Surgery, 77, 143–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Haft, J., Armstrong, W., Dyke, D. B., et al. (2007). Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation, 116, I–8–15.CrossRefGoogle Scholar
  31. 31.
    Thohan, V., Stetson, S. J., Nagueh, S. F., et al. (2005). Cellular and hemodynamic responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices. Journal of Heart Transplantation, 24, 566–575.CrossRefGoogle Scholar
  32. 32.
    Garcia, S., Kamdar, F., Boyle, A., et al. (2008). Effects of pulsatile- and continuous-flow left ventricular assist devices on left ventricular unloading. Journal of Heart Transplantation, 27, 261–267.CrossRefGoogle Scholar
  33. 33.
    Etz, C. D., Welp, H. A., Tjan, T. D., et al. (2007). Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Annals of Thoracic Surgery, 83, 1697–1706.PubMedCrossRefGoogle Scholar
  34. 34.
    Cao, X., Haft, J., Dyke, D. B., et al. Increased incidence of ventricular tachycardia following left ventricular assist device implantation with continuous flow rotary pumps. Presented at 10th Annual Scientific Meeting of the Heart Failure Society of America, Sep 2006, Seattle, WA.Google Scholar
  35. 35.
    Vollkron, M., Voitl, P., Ta, J., et al. (2007). Suction events during left ventricular and ventricular arrhythmias. Journal of Heart Transplantation, 26, 819–825.CrossRefGoogle Scholar
  36. 36.
    Wu, Yi., Allaire, P., Tao, G., et al. (2003). An advanced physiological controller design for a left ventricular assist device to prevent left ventricular collapse. Artificial Organs, 10, 926–930.CrossRefGoogle Scholar
  37. 37.
    Vollkron, M., Schima, H., Huber, L., et al. (2006). Advanced suction detection for an axial flow pump. Artificial Organs, 9, 665–670.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ranjit John
    • 1
    • 5
  • Andrew Boyle
    • 2
  • Frank Pagani
    • 3
  • Leslie Miller
    • 4
  1. 1.Department of SurgeryUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MedicineUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of SurgeryUniversity of MichiganAnn ArborUSA
  4. 4.Cardiovascular DivisionGeorgetown University-Washington Hospital CenterWashingtonUSA
  5. 5.Division of Cardiothoracic SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations