Immunogenicity and Allogenicity: A Challenge of Stem Cell Therapy

  • Dominique Charron
  • Caroline Suberbielle-Boissel
  • Reem Al-Daccak
Article

Abstract

As age progresses, the regenerative power of one’s own pluripotent stem cells is often inadequate to sustain normal tissue function. Consequently, the incidence of chronic and degenerative diseases has significantly increased. The derivation of adult tissues and organs from a variety of stem cell sources represents the starting mark for regenerative medicine. It is currently considered a developing mean to repair, restore, maintain, or enhance organ functioning through life span. Recent advances in human embryonic stem cells (hESC) research, however, made the prospect of cell replacement therapy even more compelling and highlighted hESC as a fast track in the therapeutic hope. Among the hurdles which have been largely overlooked in the excitement over the expected benefit is the immunogenicity. Indeed, beyond the clear need to establish the safety of hESC and their derived tissues in terms of tumorogenicity and potential to transmit infections, the challenge is to overcome the immunological barriers to their transplantation.

Keywords

Stem Cells Immunogenicity Allogenicity Autologous White Blood Cells Transplantation Cell Therapy 

References

  1. 1.
    Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204(2), 405–420.PubMedCrossRefGoogle Scholar
  2. 2.
    Fenno, L. E., Ptaszek, L. M., & Cowan, C. A. (2008). Human embryonic stem cells: emerging technologies and practical applications. Current Opinion in Genetics & Development 18, 1–6.CrossRefGoogle Scholar
  3. 3.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Bajada, S., Mazakova, I., Richardson, J. B., & Ashammakhi, N. (2008). Updates on stem cells and their applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2(4), 169–183.PubMedCrossRefGoogle Scholar
  5. 5.
    Bradley, J. A., Bolton, E. M., & Pedersen, R. A. (2002). Stem cell medicine encounters the immune system. Nature Reviews Immunology, 2(11), 859–871.PubMedCrossRefGoogle Scholar
  6. 6.
    Drukker, M., Katchman, H., Katz, G., Even-Tov Friedman, S., Shezen, E., Hornstein, E., et al. (2006). Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells, 24(2), 221–229.PubMedCrossRefGoogle Scholar
  7. 7.
    Kofidis, T., deBruin, J. L., Tanaka, M., Zwierzchoniewska, M., Weissman, I., Fedoseyeva, E., et al. (2005). They are not stealthy in the heart: embryonic stem cells trigger cell infiltration, humoral and T-lymphocyte-based host immune response. European Journal of Cardio-thoracic Surgery, 28(3), 461–466.PubMedCrossRefGoogle Scholar
  8. 8.
    Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–172.PubMedGoogle Scholar
  9. 9.
    Gloor, J., Cosio, F., Lager, D. J., & Stegall, M. D. (2008). The spectrum of antibody-mediated renal allograft injury: Implications for treatment. American Journal of Transplantation, 8(7), 1367–1373.PubMedCrossRefGoogle Scholar
  10. 10.
    Terasaki, P. I., & Cai, J. (2005). Humoral theory of transplantation: Further evidence. Current Opinion in Immunology, 17(5), 541–545.PubMedGoogle Scholar
  11. 11.
    Koestner, S. C., Kappeler, A., Schaffner, T., Carrel, T. P., Nydegger, U. E., & Mohacsi, P. (2004). Histo-blood group type change of the graft from B to O after ABO mismatched heart transplantation. Lancet, 363(9420), 1523–1525.PubMedCrossRefGoogle Scholar
  12. 12.
    Breimer, M. E., Molne, J., Norden, G., Rydberg, L., Thiel, G., & Svalander, C. T. (2006). Blood group A and B antigen expression in human kidneys correlated to A1/A2/B, Lewis, and secretor status. Transplantation, 82(4), 479–485.PubMedCrossRefGoogle Scholar
  13. 13.
    Rydberg, L., Skogsberg, U., & Molne, J. (2007). ABO antigen expression in graft tissue: Is titration against donor erythrocytes relevant? Transplantation, 84(12 Suppl), S10–S12.PubMedGoogle Scholar
  14. 14.
    Galili, U., Anaraki, F., Thall, A., Hill-Black, C., & Radic, M. (1993). One percent of human circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood, 82(8), 2485–2493.PubMedGoogle Scholar
  15. 15.
    Cooper, D. K. (1990). Clinical survey of heart transplantation between ABO blood group-incompatible recipients and donors. Journal of Heart Transplantation, 9(4), 376–381.PubMedGoogle Scholar
  16. 16.
    Borderie, V. M., Lopez, M., Vedie, F., & Laroche, L. (1997). ABO antigen blood-group compatibility in corneal transplantation. Cornea, 16(1), 1–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Ceppellini, R., Bigliani, S., Curtoni, E. S., & Leigheb, G. (1969). Experimental allotransplantation in man. II. The role of A 1, A 2, and B antigens. 3. Enhancement by circulating antibody. Transplantation Proceedings, 1(1), 390–394.PubMedGoogle Scholar
  18. 18.
    Genberg, H., Kumlien, G., Wennberg, L., Berg, U., & Tyden, G. (2008). ABO-incompatible kidney transplantation using antigen-specific immunoadsorption and rituximab: A 3-year follow-up. Transplantation, 85(12), 1745–1754.PubMedCrossRefGoogle Scholar
  19. 19.
    West, L. J., Pollock-Barziv, S. M., Lee, K. J., Dipchand, A. I., Coles, J. G., & Ruiz, P. (2001). Graft accommodation in infant recipients of ABO-incompatible heart transplants: Donor ABH antigen expression in graft biopsies. Journal of Heart and Lung Transplantation, 20(2), 222.PubMedCrossRefGoogle Scholar
  20. 20.
    Cailhier, J. F., Laplante, P., & Hebert, M. J. (2006). Endothelial apoptosis and chronic transplant vasculopathy: Recent results, novel mechanisms. Ameraican Journal of Transplantation, 6(2), 247–253.CrossRefGoogle Scholar
  21. 21.
    Reed, E. F. (2003). Signal transduction via MHC class I molecules in endothelial and smooth muscle cells. Critical Reviews in Immunology, 23(1–2), 109–128.PubMedCrossRefGoogle Scholar
  22. 22.
    Zou, Y., Stastny, P., Susal, C., Dohler, B., & Opelz, G. (2007). Antibodies against MICA antigens and kidney-transplant rejection. New England Journal of Medicine, 357(13), 1293–1300.PubMedCrossRefGoogle Scholar
  23. 23.
    Takemoto, S., Port, F. K., Claas, F. H., & Duquesnoy, R. J. (2004). HLA matching for kidney transplantation. Human Immunology, 65(12), 1489–1505.PubMedCrossRefGoogle Scholar
  24. 24.
    Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., et al. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9864–9869.PubMedCrossRefGoogle Scholar
  25. 25.
    Charron, D. (2005). Immunogenetics today: HLA, MHC and much more. Current Opinion in Immunology, 17(5), 493–497.PubMedCrossRefGoogle Scholar
  26. 26.
    Dickinson, A. M., & Charron, D. (2005). Non-HLA immunogenetics in hematopoietic stem cell transplantation. Current Opinion in Immunology, 17(5), 517–525.PubMedGoogle Scholar
  27. 27.
    Fairchild, P. J., Robertson, N. J., Minger, S. L., & Waldmann, H. (2007). Embryonic stem cells: Protecting pluripotency from alloreactivity. Current Opinion in Immunology, 19(5), 596–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Gould, D. S., & Auchincloss Jr., H. (1999). Direct and indirect recognition: The role of MHC antigens in graft rejection. Immunology Today, 20(2), 77–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Fairchild, P. J., Cartland, S., Nolan, K. F., & Waldmann, H. (2004). Embryonic stem cells and the challenge of transplantation tolerance. Trends in Immunology, 25(9), 465–470.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, Z. Z., Au, P., Chen, T., Shao, Y., Daheron, L. M., Bai, H., et al. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnology, 25(3), 317–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Kreisel, D., Krupnick, A. S., Gelman, A. E., Engels, F. H., Popma, S. H., Krasinskas, A. M., et al. (2002). Non-hematopoietic allograft cells directly activate CD8+ T cells and trigger acute rejection: An alternative mechanism of allorecognition. Nature Medicine, 8(3), 233–239.PubMedCrossRefGoogle Scholar
  32. 32.
    Drukker, M., & Benvenisty, N. (2004). The immunogenicity of human embryonic stem-derived cells. Trends in Biotechnology, 22(3), 136–141.PubMedCrossRefGoogle Scholar
  33. 33.
    Gebel, H. M., & Bray, R. A. (2008). Approaches for transplanting the sensitized patient: Biology versus pharmacology. Nephrology Dialysis Transplantation, 23(8), 2454–2457.CrossRefGoogle Scholar
  34. 34.
    Duquesnoy, R. J., Howe, J., & Takemoto, S. (2003). HLAmatchmaker: A molecularly based algorithm for histocompatibility determination. IV. An alternative strategy to increase the number of compatible donors for highly sensitized patients. Transplantation, 75(6), 889–897.PubMedCrossRefGoogle Scholar
  35. 35.
    Bray, R. A., Nolen, J. D., Larsen, C., Pearson, T., Newell, K. A., Kokko, K., et al. (2006). Transplanting the highly sensitized patient: The emory algorithm. American Journal of Transplantation, 6(10), 2307–2315.PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, J. A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366(9502), 2019–2025.PubMedCrossRefGoogle Scholar
  37. 37.
    Rao, M. S., & Auerbach, J. M. (2006). Estimating human embryonic stem-cell numbers. Lancet, 367(9511), 650.PubMedCrossRefGoogle Scholar
  38. 38.
    Grusby, M. J., Auchincloss Jr., H., Lee, R., Johnson, R. S., Spencer, J. P., Zijlstra, M., et al. (1993). Mice lacking major histocompatibility complex class I and class II molecules. Proceedings of the National Academy of Sciences of the United States of America, 90(9), 3913–3917.PubMedCrossRefGoogle Scholar
  39. 39.
    Byrne, J. A. (2008). Generation of isogenic pluripotent stem cells. Human Molecular Genetics, 17(R1), R37–R41.PubMedCrossRefGoogle Scholar
  40. 40.
    Wakayama, T., Tabar, V., Rodriguez, I., Perry, A. C., Studer, L., & Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science, 292(5517), 740–743.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, L., Duan, E., Sung, L. Y., Jeong, B. S., Yang, X., & Tian, X. C. (2005). Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biology of Reproduction, 73(1), 149–155.PubMedCrossRefGoogle Scholar
  42. 42.
    Drukker, M. (2008). Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Seminars in Immunology, 20(2), 123–129.PubMedCrossRefGoogle Scholar
  43. 43.
    Fandrich, F., Lin, X., Chai, G. X., Schulze, M., Ganten, D., Bader, M., et al. (2002). Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nature Medicine, 8(2), 171–178.PubMedCrossRefGoogle Scholar
  44. 44.
    Tian, X., & Kaufman, D. S. (2008). Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls. Current Opinion in Hematology, 15(4), 312–318.PubMedCrossRefGoogle Scholar
  45. 45.
    Worthington, J. E., Martin, S., Al-Husseini, D. M., Dyer, P. A., & Johnson, R. W. (2003). Posttransplantation production of donor HLA-specific antibodies as a predictor of renal transplant outcome. Transplantation, 75(7), 1034–1040.PubMedCrossRefGoogle Scholar
  46. 46.
    Lefaucheur, C., Nochy, D., Hill, G. S., Suberbielle-Boissel, C., Antoine, C., Charron, D., & Glotz, D. (2007). Determinants of poor graft outcome in patients with antibody-mediated acute rejection. American Journal of Transplantation, 7(4), 832–841.PubMedCrossRefGoogle Scholar
  47. 47.
    Lefaucheur, C., Suberbielle-Boissel, C., Hill, G. S., Nochy, D., Andrade, J., Antoine, C., et al. (2008). Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. American Journal of Transplantation, 8(2), 324–331.PubMedGoogle Scholar
  48. 48.
    Vaidya, S., Partlow, D., Susskind, B., Noor, M., Barnes, T., & Gugliuzza, K. (2006). Prediction of crossmatch outcome of highly sensitized patients by single and/or multiple antigen bead luminex assay. Transplantation, 82(11), 1524–1528.PubMedCrossRefGoogle Scholar
  49. 49.
    Terasaki, P. I., Ozawa, M., & Castro, R. (2007). Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival. American Journal of Transplantation, 7(2), 408–415.PubMedCrossRefGoogle Scholar
  50. 50.
    Gebel, H. M., Bray, R. A., & Nickerson, P. (2003). Pre-transplant assessment of donor-reactive, HLA-specific antibodies in renal transplantation: Contraindication vs. risk. American Journal of Transplantation, 3(12), 1488–1500.PubMedCrossRefGoogle Scholar
  51. 51.
    Piazza, A., Adorno, D., Poggi, E., Borrelli, L., Buonomo, O., Pisani, F., et al. (1998). Flow cytometry crossmatch: A sensitive technique for assessment of acute rejection in renal transplantation. Transplantation Proceedings, 30(5), 1769–1771.PubMedCrossRefGoogle Scholar
  52. 52.
    Piazza, A., Borrelli, L., Buonomo, O., Pisani, F., Valeri, M., Torlone, N., et al. (1999). Flow cytometry crossmatch and kidney graft outcome. Transplantation Proceedings, 31(1–2), 314–316.PubMedCrossRefGoogle Scholar
  53. 53.
    Zangwill, S., Ellis, T., Stendahl, G., Zahn, A., Berger, S., & Tweddell, J. (2007). Practical application of the virtual crossmatch. Pediatric Transplantation, 11(6), 650–654.PubMedCrossRefGoogle Scholar
  54. 54.
    Eckels, D. D. (2008). Solid phase testing in the HLA laboratory: Implications for organ allocation. International Journal of Immunogenetics (in press), May 14.Google Scholar
  55. 55.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  57. 57.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.PubMedCrossRefGoogle Scholar
  58. 58.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.PubMedCrossRefGoogle Scholar
  59. 59.
    Nishikawa, S., Goldstein, R. A., & Nierras, C. R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature Reviews Molecular Cell Biology, 9(9), 725–729.PubMedCrossRefGoogle Scholar
  60. 60.
    Kwan, M. D., & Longaker, M. T. (2008). Regenerative medicine: The next frontier. Transplantation, 86(2), 206–207.PubMedGoogle Scholar
  61. 61.
    Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews Molecular Cell Biology, 8(9), 703–713.PubMedCrossRefGoogle Scholar
  62. 62.
    Larbi, A., Franceschi, C., Mazzatti, D., Solana, R., Wikby, A., & Pawelec, G. (2008). Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda), 23, 64–74.Google Scholar
  63. 63.
    Charron, D. (2007). Autologous white blood cell transfusion: Toward a younger immunity. Human Immunology, 68(10), 805–812.PubMedCrossRefGoogle Scholar
  64. 64.
    Schirrmacher, V. (2005). T cell-mediated immunotherapy of metastases: State of the art in 2005. Expert Opinion on Biological Therapy, 5(8), 1051–1068.PubMedCrossRefGoogle Scholar
  65. 65.
    Vuk-Pavlovic, S. (2008). Rebuilding immunity in cancer patients. Blood Cells, Molecules & Diseases, 40(1), 94–100.CrossRefGoogle Scholar
  66. 66.
    Shurin, M. R., Shurin, G. V., & Chatta, G. S. (2007). Aging and the dendritic cell system: Implications for cancer. Critical Reviews in Oncology/Hematology, 64(2), 90–105.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dominique Charron
    • 1
  • Caroline Suberbielle-Boissel
    • 1
  • Reem Al-Daccak
    • 1
  1. 1.INSERM U662, Institut Universitaire d’Hématologie, CIB-HOG, AP-HPUniversité Paris-Diderot and Laboratoire d’Immunologie et d’Histocompatibilité, Hôpital Saint LouisParisFrance

Personalised recommendations