Panoramic View of The Fifth International Symposium on Stem Cell Therapy and Applied Cardiovascular Biotechnology, April 2008, Madrid (Spain)

  • Adolfo Villa
  • Ricardo Sanz
  • M. Eugenia Fernandez
  • Jaime Elizaga
  • Indrig Ludwig
  • Pedro L. Sanchez
  • Francisco Fernandez-Aviles


The Fifth International Symposium on Stem Cell Therapy and Applied Cardiovascular Biotechnology was held on April 24th–25th, 2008, at the Auditorium of the High Council of Scientific Research of Spain (CSIC) in Madrid, as a continuation of a series of yearly meetings, organized in an attempt to encourage translational research in this field and facilitate a positive interaction among experts from several countries, along with industry representatives and journalists. In addition, members of the Task Force of the European Society concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart gathered and discussed an update of the previous consensus, still pending of publication. In this article, we summarize some of the main topics of discussion, the state-of-the-art and latest advances in this field, and new challenges brought up for the near future.


Stem Cell Therapy Biotechnology Tissue Engineering Heart Disease Translational Research 


  1. 1.
    Bartunek, J., Dimmeler, S., Drexler, H., Fernández-Avilés, F., Galinanes, M., Janssens, S., task force of the European Society of Cardiology, et al. (2006). The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. European Heart Journal, 27(11), 1338–1340.PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4 + /FLK-1 + biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26(6), 1464–1473.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartunek, J., Croissant, J. D., Wijns, W., Gofflot, S., de Lavareille, A., Vanderheyden, M., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H1095–H1104.PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki, K., Heeschen, C., Aicher, A., Ziebart, T., Honold, J., Urbich, C., et al. (2006). Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14537–14541.PubMedCrossRefGoogle Scholar
  5. 5.
    Askari, A., Unzek, S., Goldman, C. K., Ellis, S. G., Thomas, J. D., DiCorleto, P. E., et al. (2004). Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. Journal of the American College of Cardiology, 43(10), 1908–1914.PubMedCrossRefGoogle Scholar
  6. 6.
    Fazel, S., Chen, L., Weisel, R. D., Angoulvant, D., Seneviratne, C., Fazel, A., et al. (2005). Cell transplantation preserves cardiac function after infarction by infarct stabilization: Augmentation by stem cell factor. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1310.PubMedCrossRefGoogle Scholar
  7. 7.
    Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. Journal of the Federation of American Societies for Experimental Biology, 21(7), 1345–1357.Google Scholar
  8. 8.
    Fazel, S., Chen, L., Seneviratne, C., Angoulvant, D., Weisel, R. D., & Li, R. K. (2007). Abstract 861: Post myocardial infarction implantation of mesenchymal stem cells engineered to over-express stem cell factor improves cardiac function but results in tumorogenesis. Circulation, 116, II_168.Google Scholar
  9. 9.
    Schächinger, V., Assmus, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44(8), 1690–1699.PubMedCrossRefGoogle Scholar
  10. 10.
    Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355(12), 1222–1232.PubMedCrossRefGoogle Scholar
  11. 11.
    Winter, E. M., Grauss, R. W., Hogers, B., van Tuyn, J., van der Geest, R., Lie-Venema, H., et al. (2007). Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation, 116(8), 917–927.PubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  14. 14.
    Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.PubMedCrossRefGoogle Scholar
  15. 15.
    Zohlnhöfer, D., Dibra, A., Koppara, T., de Waha, A., Ripa, R. S., Kastrup, J., et al. (2008). Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: A meta-analysis. Journal of the American College of Cardiology, 51(15), 1429–1437.PubMedCrossRefGoogle Scholar
  16. 16.
    Erbs, S., Linke, A., Adams, V., Lenk, K., Thiele, H., Diederich, K. W., et al. (2005). Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: First randomized and placebo-controlled study. Circulation Research, 97(8), 756–762.PubMedCrossRefGoogle Scholar
  17. 17.
    Losordo, D. W., Schatz, R. A., White, C. J., Udelson, J. E., Veereshwarayya, V., Durgin, M., et al. (2007). Intramyocardial transplantation of autologous CD34 + stem cells for intractable angina: A phase I/IIa double-blind, randomized controlled trial. Circulation, 115(25), 3165–3172.PubMedCrossRefGoogle Scholar
  18. 18.
    Ince, H., Petzsch, M., Kleine, H. D., Schmidt, H., Rehders, T., Körber, T., et al. (2005). Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation, 112(20), 3097–3106.PubMedCrossRefGoogle Scholar
  19. 19.
    Honold, J., Lehmann, R., Heeschen, C., Walter, D. H., Assmus, B., Sasaki, K., et al. (2006). Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(10), 2238–2243.PubMedCrossRefGoogle Scholar
  20. 20.
    Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M., & Dimmeler, S. (2007). Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. European Heart Journal, 28(6), 766–772.PubMedCrossRefGoogle Scholar
  21. 21.
    Britten, M. B., Abolmaali, N. D., Assmus, B., Lehmann, R., Honold, J., Schmitt, J., et al. (2003). Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation, 108(18), 2212–2218.PubMedCrossRefGoogle Scholar
  22. 22.
    Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., REPAIR-AMI Investigators, et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New England Journal of Medicine, 355(12), 1210–1221.PubMedCrossRefGoogle Scholar
  23. 23.
    Rosen, A. B., Kelly, D. J., Schuldt, A. J., Lu, J., Potapova, I. A., Doronin, S. V., et al. (2007). Finding fluorescent needles in the cardiac haystack: Tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells, 25(8), 2128–2138.PubMedCrossRefGoogle Scholar
  24. 24.
    Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., et al. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 116(11 Suppl), I38–I45.PubMedGoogle Scholar
  25. 25.
    Terrovitis, J., Stuber, M., Youssef, A., Preece, S., Leppo, M., Kizana, E., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117(12), 1555–1562.PubMedCrossRefGoogle Scholar
  26. 26.
    Delo, D., Olson, J., Baptista, P., D’Agostino, Jr. R., Atala, A., Zhu, J. M., et al. (2008). Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells and Development. doi:10.1089/scd.2008.0028.
  27. 27.
    Ebert, S. N., Taylor, D. G., Nguyen, H. L., Kodack, D. P., Beyers, R. J., Xu, Y., et al. (2007). Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells, 25(11), 2936–2944.PubMedCrossRefGoogle Scholar
  28. 28.
    Barnett, B. P., Arepally, A., Karmarkar, P. V., Qian, D., Gilson, W. D., Walczak, P., et al. (2007). Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nature Medicine, 13(8), 986–991.PubMedCrossRefGoogle Scholar
  29. 29.
    Dreger, S. A., Thomas, P., Sachlos, E., Chester, A. H., Czernuszka, J. T., Taylor, P. M., et al. (2006). Potential for synthesis and degradation of extracellular matrix proteins by valve interstitial cells seeded onto collagen scaffolds. Tissue Engineering, 12(9), 2533–2540.PubMedCrossRefGoogle Scholar
  30. 30.
    Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.PubMedCrossRefGoogle Scholar
  31. 31.
    Yildirim, Y., Naito, H., Didié, M., Karikkineth, B. C., Biermann, D., Eschenhagen, T., et al. (2007). Development of a biological ventricular assist device: Preliminary data from a small animal model. Circulation, 116(11 Suppl), I16–23.PubMedGoogle Scholar
  32. 32.
    Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I. H., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 100(2), 263–272.PubMedCrossRefGoogle Scholar
  33. 33.
    Rose, E. A., Gelijns, A. C., Moskowitz, A. J., Heitjan, D. F., Stevenson, L. W., Dembitsky, W., Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group, et al. (2001). Long-term mechanical left ventricular assistance for end-stage heart failure. New England Journal of Medicine, 345(20), 1435–1443.PubMedCrossRefGoogle Scholar
  34. 34.
    Rogers, J. G., Butler, J., Lansman, S. L., Gass, A., Portner, P. M., Pasque, M. K., INTrEPID Investigators, et al. (2007). Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: Results of the INTrEPID Trial. Journal of the American College of Cardiology, 50(8), 741–747.PubMedCrossRefGoogle Scholar
  35. 35.
    Nasseri, B. A., Kukucka, M., Dandel, M., Knosalla, C., Potapov, E., Lehmkuhl, H. B., et al. (2007). Intramyocardial delivery of bone marrow mononuclear cells and mechanical assist device implantation in patients with end-stage cardiomyopathy. Cell Transplantation, 16(9), 941–949.PubMedCrossRefGoogle Scholar
  36. 36.
    Birks, E. J., Tansley, P. D., Hardy, J., George, R. S., Bowles, C. T., Burke, M., et al. (2006). Left ventricular assist device and drug therapy for the reversal of heart failure. New England Journal of Medicine, 355(18), 1873–1884.PubMedCrossRefGoogle Scholar
  37. 37.
    Shuros, A. C., Salo, R. W., Florea, V. G., Pastore, J., Kuskowski, M. A., Chandrashekhar, Y., et al. (2007). Ventricular preexcitation modulates strain and attenuates cardiac remodeling in a swine model of myocardial infarction. Circulation, 116(10), 1162–1169.PubMedCrossRefGoogle Scholar
  38. 38.
    Chung, E. S., Menon, S. G., Weiss, R., Schloss, E. J., Chow, T., Kereiakes, D. J., Mazur, W., Salo, R. W., Galle, E., & Pastore, J. M. (2007). Feasibility of biventricular pacing in patients with recent myocardial infarction: Impact on ventricular remodeling. Congestive Heart Failure, 13(1), 9–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adolfo Villa
    • 1
  • Ricardo Sanz
    • 1
  • M. Eugenia Fernandez
    • 1
  • Jaime Elizaga
    • 1
  • Indrig Ludwig
    • 1
  • Pedro L. Sanchez
    • 1
  • Francisco Fernandez-Aviles
    • 1
  1. 1.Department of CardiologyGeneral University Hospital Gregorio MarañonMadridSpain

Personalised recommendations