Advertisement

Human ESC vs. iPSC—Pros and Cons

  • Jane J. Pappas
  • Phillip C. Yang
Innovation, Translation, Education

This feature section of JCTR will appear in every issue and include Guest editorials, new listings of biotech companies, and “primers” highlighting new information. We welcome your suggestions.

Human ESC vs. iPSC—Pros and Cons

Jane J. Pappas · Phillip C.Yang

Introductions

Recent breakthroughs in stem cell research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] have allowed the scientific community to envision a future in which cell-based therapies may become a reality. Most prominent are the reports of pluripotent stem cell inductions from mouse [5, 7] and human [6, 9] somatic cells by defined factors. These findings showcased the feasibility of using terminally differentiated, autologous, patient- and disease-specific cell sources for the derivation of the many differentiated cell types currently sought by the field of regenerative medicine.

From a clinical perspective, tapping into an autologous cell source represents a means to assure blood type and human leukocyte antigen (HLA) group...

Notes

Acknowledgement

The authors wish to thank James Byrne, Ph.D. (Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA) and Zeina Saikali, Ph.D. (Juravinski Cancer Centre, Hamilton, Ontario, Canada), for having kindly reviewed the manuscript. The authors also wish to thank Kathleen Gallagher and Brian Habekoss, for having provided excellent administrative support.

References

  1. 1.
    Aoi, T., Yae, K., Nakagawa, M., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science DOI  10.1126/science.1154884.
  2. 2.
    Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.PubMedCrossRefGoogle Scholar
  3. 3.
    Maherali, N. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germ line-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  8. 8.
    Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.PubMedCrossRefGoogle Scholar
  9. 9.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  10. 10.
    Lowry, W. E., Richter, L., Yachechko, R., et al. (2007). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 2883–2888.CrossRefGoogle Scholar
  11. 11.
    Park, I.-H., Zhao, R., West, J., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141–146.PubMedCrossRefGoogle Scholar
  12. 12.
    Simonsson, S., & Gurdon, J. (2004). DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biology, 6(10), 984–990.PubMedCrossRefGoogle Scholar
  13. 13.
    Jiang, G., Park, K., Kim, J., et al. (2008). Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers, 89(7), 635–642 Jul.PubMedCrossRefGoogle Scholar
  14. 14.
    Toh, M. L., Hong, S. S., van de Loo, F., et al. (2005). Enhancement of adenovirus-mediated gene delivery to rheumatoid arthritis synoviocytes and synovium by fiber modifications: role of arginine–glycine–aspartic acid (RGD)- and non-RGD-binding integrins. Journal of Immunology, 175(11), 7687–7698 Dec 1.Google Scholar
  15. 15.
    Cowan, C. A., Klimanskaya, I., McMahon, J., et al. (2004). Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 350(13), 1353–1356.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor, C. J., Bolton, E. M., Pocock, S., Sharples, L. D., Pedersen, R. A., & Bradley, J. A. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet, 366(9502), 2019–2025.PubMedCrossRefGoogle Scholar
  18. 18.
    Revazova, E. S., Turovets, N. A., Kochetkova, O. D., et al. (2008). HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning and Stem Cells, 10(1), 11–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Addis, R. C., Bulte, J. W., & Gearhart, J. D. (2008). Special cells, special considerations: the challenges of bringing embryonic stem cells from the laboratory to the clinic. Clinical Pharmacology & Therapeutics, 83(3), 386–389.CrossRefGoogle Scholar
  20. 20.
    Allegrucci, C., & Young, L. E. (2007). Differences between human embryonic stem cell lines. Human Reproduction Update, 13(2), 103–120.PubMedCrossRefGoogle Scholar
  21. 21.
    Huber, I., Itzhaki, I., Caspi, O., et al. (2007). Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB Journal, 21(10), 2551–2563.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Stanford University School of MedicineStanfordUSA

Personalised recommendations