Advertisement

Neuroscience Bulletin

, Volume 35, Issue 3, pp 378–388 | Cite as

Rapid and Sparse Labeling of Neurons Based on the Mutant Virus-Like Particle of Semliki Forest Virus

  • Fan JiaEmail author
  • Xutao Zhu
  • Pei Lv
  • Liang Hu
  • Qing Liu
  • Sen Jin
  • Fuqiang XuEmail author
METHOD

Abstract

Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.

Keywords

Semliki Forest virus Mutant virus-like particle Rapid labeling Sparse labeling Neuronal morphology 

Notes

Acknowledgements

We are grateful to Dr. Markus U. Ehrengruber (Department of Biology, Kantonsschule Hohe Promenade, Zurich, Switzerland) for providing the SFV replicon and helper cDNA clones. This work was supported by the National Natural Science Foundation of China (31771197,31830035 and 91732304), the National Basic Research Development Program (973 Program) of China (2015CB755600), the Strategic Priority Research Program (B), Chinese Academy of Sciences, China (XDBS01030200), and the Major Research Plan of the National Natural Science Foundation of China (91632303).

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (MP4 29141 kb)

References

  1. 1.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 2005, 6: 297–311.CrossRefPubMedGoogle Scholar
  2. 2.
    Jefferis GS, Livet J. Sparse and combinatorial neuron labelling. Curr Opin Neurobiol 2012, 22: 101–110.CrossRefPubMedGoogle Scholar
  3. 3.
    Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol 2008, 317: 147–160.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22: 451–461.CrossRefPubMedGoogle Scholar
  5. 5.
    Rotolo T, Smallwood PM, Williams J, Nathans J. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLoS One 2008, 3: e4099.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Badea TC, Hua ZL, Smallwood PM, Williams J, Rotolo T, Ye X, et al. New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS One 2009, 4: e7859.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Potter CJ, Tasic B, Russler EV, Liang L, Luo L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 2010, 141: 536–548.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gibson DA, Ma L. Mosaic analysis of gene function in postnatal mouse brain development by using virus-based Cre recombination. J Vis Exp 2011.Google Scholar
  9. 9.
    Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, et al. Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 2014, 81: 1040–1056.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bosch MK, Nerbonne JM, Ornitz DM. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo. PLoS One 2014, 9: e104062.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goenawan H, Hirai H. Modulation of lentiviral vector tropism in cerebellar Purkinje cells in vivo by a lysosomal cysteine protease cathepsin K. J Neurovirol 2012, 18: 521–531.CrossRefPubMedGoogle Scholar
  12. 12.
    Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015, 9: 80.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim EJ, Jacobs MW, Ito-Cole T, Callaway EM. Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep 2016, 15: 692–699.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lo L, Anderson DJ. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 2011, 72: 938–950.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, et al. Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 2000, 97: 9264–9269.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011, 71: 617–631.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 2005, 79: 9933–9944.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takayama K, Torashima T, Horiuchi H, Hirai H. Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 2008, 443: 7–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang F, Qian X, Qin C, Lin Y, Wu H, Chang L, et al. Phosphofructokinase-1 negatively regulates neurogenesis from neural stem cells. Neurosci Bull 2016, 32: 205–216.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fazakerley JK. Pathogenesis of Semliki Forest virus encephalitis. J Neurovirol 2002, 8 Suppl 2: 66–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 1991, 9: 1356–1361.CrossRefPubMedGoogle Scholar
  22. 22.
    Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology 1993, 11: 916–920.PubMedGoogle Scholar
  23. 23.
    Andrell J, Tate CG. Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 2013, 30: 52–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Blasey HD, Lundstrom K, Tate S, Bernard AR. Recombinant protein production using the Semliki Forest Virus expression system. Cytotechnology 1997, 24: 65–72.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ehrengruber MU, Lundstrom K, Schweitzer C, Heuss C, Schlesinger S, Gahwiler BH. Recombinant Semliki Forest virus and Sindbis virus efficiently infect neurons in hippocampal slice cultures. Proc Natl Acad Sci USA 1999, 96: 7041–7046.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ehrengruber MU, Hennou S, Bueler H, Naim HY, Deglon N, Lundstrom K. Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 2001, 17: 855–871.CrossRefPubMedGoogle Scholar
  27. 27.
    Lundstrom K. Alphaviruses in gene therapy. Viruses 2015, 7: 2321–2333.PubMedGoogle Scholar
  28. 28.
    Jia F, Miao H, Zhu X, Xu F. Pseudo-typed Semliki Forest virus delivers EGFP into neurons. J Neurovirol 2017, 23: 205–215.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu WW, Goodhouse J, Jeon NL, Enquist LW. A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One 2008, 3: e2382.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Casasnovas JM. Virus-receptor interactions and receptor-mediated virus entry into host cells. Subcell Biochem 2013, 68: 441–466.CrossRefPubMedGoogle Scholar
  31. 31.
    Sato Y, Shiraishi Y, Furuichi T. Cell specificity and efficiency of the Semliki Forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods 2004, 137: 111–121.CrossRefPubMedGoogle Scholar
  32. 32.
    Lundstrom K, Abenavoli A, Malgaroli A, Ehrengruber MU. Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther 2003, 7: 202–209.CrossRefPubMedGoogle Scholar
  33. 33.
    Kebschull JM, Garcia da Silva P, Zador AM. A new defective helper RNA to produce recombinant Sindbis virus that infects neurons but does not propagate. Front Neuroanat 2016, 10: 56.Google Scholar
  34. 34.
    Beaudoin GM, 3rd, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 2012, 7: 1741–1754.CrossRefPubMedGoogle Scholar
  35. 35.
    GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron 2017, 93: 677–690 e675.Google Scholar
  36. 36.
    Ribak CE, Seress L, Amaral DG. The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 1985, 14: 835–857.CrossRefPubMedGoogle Scholar
  37. 37.
    Scharfman HE, Schwartzkroin PA. Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices. J Neurosci 1988, 8: 3812–3821.CrossRefPubMedGoogle Scholar
  38. 38.
    Majumdar D, Gao Y, Li D, Webb DJ. Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 2011, 196: 38–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Meyer K, Kaspar BK. Glia-neuron interactions in neurological diseases: testing non-cell autonomy in a dish. Brain Res 2017, 1656: 27–39.CrossRefPubMedGoogle Scholar
  40. 40.
    Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and intracellular signaling for neuronal polarity. Physiol Rev 2015, 95: 995–1024.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992, 66: 4992–5001.PubMedPubMedCentralGoogle Scholar
  42. 42.
    La Linn M, Eble JA, Lubken C, Slade RW, Heino J, Davies J, et al. An arthritogenic alphavirus uses the alpha1beta1 integrin collagen receptor. Virology 2005, 336: 229–239.CrossRefPubMedGoogle Scholar
  43. 43.
    Gardner CL, Ebel GD, Ryman KD, Klimstra WB. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A 2011, 108: 16026–16031.CrossRefPubMedGoogle Scholar
  44. 44.
    Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 2003, 77: 12022–12032.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 2018, 557: 570–574.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28: 41–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Guo C, Witter L, Rudolph S, Elliott HL, Ennis KA, Regehr WG. Purkinje cells directly inhibit granule cells in specialized regions of the cerebellar cortex. Neuron 2016, 91: 1330–1341.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to Purkinje cells and interneurons. Neuron 2016, 91: 312–319.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Barski JJ, Dethleffsen K, Meyer M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 2000, 28: 93–98.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang XM, Ng AH, Tanner JA, Wu WT, Copeland NG, Jenkins NA, et al. Highly restricted expression of Cre recombinase in cerebellar Purkinje cells. Genesis 2004, 40: 45–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Li M, Liu F, Jiang H, Lee TS, Tang S. Long-term two-photon imaging in awake macaque monkey. Neuron 2017, 93: 1049–1057 e1043.Google Scholar
  52. 52.
    Sawada Y, Kajiwara G, Iizuka A, Takayama K, Shuvaev AN, Koyama C, et al. High transgene expression by lentiviral vectors causes maldevelopment of Purkinje cells in vivo. Cerebellum 2010, 9: 291–302.CrossRefPubMedGoogle Scholar
  53. 53.
    Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997, 15: 871–875.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological SystemsWuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
  2. 2.Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations