Advertisement

Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms

  • Lingling Cui
  • Fei Wang
  • Miao Chang
  • Zhiyang Yin
  • Guoguang Fan
  • Yanzhuo Song
  • Yange Wei
  • Yixiao Xu
  • Yifan Zhang
  • Yanqing TangEmail author
  • Xiaohong GongEmail author
  • Ke XuEmail author
Original Article
  • 20 Downloads

Abstract

ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.

Keywords

Zinc finger protein 804A Catechol-O-methyltransferase Amplitudes of low-frequency fluctuations fMRI 

Notes

Acknowledgements

This work was supported by the National Basic Research Development Program of China (2016YFC0906400, 2016YFC1306900 and 2016YFC0904300), the National Natural Science Foundation of China (81571311 and 81571331), the National Science Fund for Distinguished Young Scholars of China (81725005), the National High Tech Development Project (863 Project) of China (2015AA020513), the Science and Technology Project of Liaoning Province, China (2015225018), and the Educational Foundation (Pandeng Scholarship) of Liaoning Province, China. We are grateful for the support of Department of Radiology and Psychiatry, First Affiliated Hospital of China Medical University. We thank all the participants for their cooperation.

Conflicts of interest

The authors have no conflicts of interest to declare.

Supplementary material

12264_2019_357_MOESM1_ESM.pdf (294 kb)
Supplementary material 1 (PDF 294 kb)

References

  1. 1.
    International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.Google Scholar
  2. 2.
    Kauppi K, Westlye LT, Tesli M, Bettella F, Brandt CL, Mattingsdal M, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 2015, 41: 736–743.CrossRefGoogle Scholar
  3. 3.
    Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A, Ho BC, et al. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 2013, 39: 703–711.CrossRefGoogle Scholar
  4. 4.
    Yang Y, Yu H, Li W, Liu B, Zhang H, Ding S, et al. Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population. Behav Brain Funct 2018, 14: 1.CrossRefGoogle Scholar
  5. 5.
    Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004, 74: 1–58.CrossRefGoogle Scholar
  6. 6.
    Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999, 51: 593–628.Google Scholar
  7. 7.
    Elton A, Smith CT, Parrish MH, Boettiger CA. COMT Val(158)Met polymorphism exerts sex-dependent effects on fMRI measures of brain function. Front Hum Neurosci 2017, 11: 578.CrossRefGoogle Scholar
  8. 8.
    Ojala KE, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, et al. Dopaminergic drug effects on probability weighting during risky decision making. eNeuro 2018, 5.Google Scholar
  9. 9.
    Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, et al. Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 2013, 8: e78697.CrossRefGoogle Scholar
  10. 10.
    Zhao F, Zhang X, Qin W, Liu F, Wang Q, Xu Q, et al. Network-dependent modulation of COMT and DRD2 polymorphisms in healthy young adults. Sci Rep 2015, 5: 17996.CrossRefGoogle Scholar
  11. 11.
    Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011, 69: e113–e125.CrossRefGoogle Scholar
  12. 12.
    Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009, 324: 605.CrossRefGoogle Scholar
  13. 13.
    O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008, 40: 1053–1055.CrossRefGoogle Scholar
  14. 14.
    Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European schizophrenia GWAS loci in Asian populations via comprehensive meta-analyses. Mol Neurobiol 2017, 54: 4071–4080.CrossRefGoogle Scholar
  15. 15.
    Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012, 7: e32404.CrossRefGoogle Scholar
  16. 16.
    Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci 2009, 30: 1117–1127.CrossRefGoogle Scholar
  17. 17.
    Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016, 17: 524–532.CrossRefGoogle Scholar
  18. 18.
    Oh Y, Park C, Kim DH, Shin H, Kang YM, DeWaele M, et al. Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal Chem 2016, 88: 10962–10970.CrossRefGoogle Scholar
  19. 19.
    Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004, 75: 807–821.CrossRefGoogle Scholar
  20. 20.
    Huang XQ, Lui S, Deng W, Chan RC, Wu QZ, Jiang LJ, et al. Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage 2010, 49: 2901–2906.CrossRefGoogle Scholar
  21. 21.
    Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36: 144–152.CrossRefGoogle Scholar
  22. 22.
    Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007, 29: 83–91.CrossRefGoogle Scholar
  23. 23.
    Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci 2006, 29: 449–476.CrossRefGoogle Scholar
  24. 24.
    Di X, Kannurpatti SS, Rypma B, Biswal BB. Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 2013, 23: 255–263.CrossRefGoogle Scholar
  25. 25.
    Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol 2013, 70: 845–851.CrossRefGoogle Scholar
  26. 26.
    Salvador R, Vega D, Pascual JC, Marco J, Canales-Rodriguez EJ, Aguilar S, et al. Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biol Psychiatry 2016, 79: 107–116.CrossRefGoogle Scholar
  27. 27.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412: 150–157.CrossRefGoogle Scholar
  28. 28.
    Fryer SL, Roach BJ, Ford JM, Turner JA, van Erp TG, Voyvodic J, et al. Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology 2015, 40: 2705–2714.CrossRefGoogle Scholar
  29. 29.
    Hare SM, Ford JM, Ahmadi A, Damaraju E, Belger A, Bustillo J, et al. Modality-dependent impact of hallucinations on low-frequency fluctuations in schizophrenia. Schizophr Bull 2017, 43: 389–396.CrossRefGoogle Scholar
  30. 30.
    Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.CrossRefGoogle Scholar
  31. 31.
    First MB, SpitzerRL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I & II Disorders (Version 2.0). New York: New York State Psychiatric Institute, 1995.Google Scholar
  32. 32.
    Lish JD, Weissman MM, Adams PB, Hoven CW, Bird H. Family psychiatric screening instruments for epidemiologic studies: pilot testing and validation. Psychiatry Res 1995, 57: 169–180.CrossRefGoogle Scholar
  33. 33.
    Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14: 339–351.CrossRefGoogle Scholar
  34. 34.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.CrossRefGoogle Scholar
  35. 35.
    Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT, et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett 2011, 498: 185–189.CrossRefGoogle Scholar
  36. 36.
    Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29: 162–173.CrossRefGoogle Scholar
  37. 37.
    Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, et al. Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front Psychiatry 2018, 9: 43.CrossRefGoogle Scholar
  38. 38.
    Kuppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 2001, 12: 1175–1179.CrossRefGoogle Scholar
  39. 39.
    Fumagalli F, Racagni G, Colombo E, Riva MA. BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol Psychiatry 2003, 8: 898–899.CrossRefGoogle Scholar
  40. 40.
    Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 1994, 79: 729–742.CrossRefGoogle Scholar
  41. 41.
    Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995, 376: 572–575.CrossRefGoogle Scholar
  42. 42.
    Qin S, Cousijn H, Rijpkema M, Luo J, Franke B, Hermans EJ, et al. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front Integr Neurosci 2012, 6: 16.CrossRefGoogle Scholar
  43. 43.
    Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 2009, 132: 417–425.CrossRefGoogle Scholar
  44. 44.
    Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry 2011, 16: 462–470.CrossRefGoogle Scholar
  45. 45.
    Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). Genes Brain Behav 2017, 16: 479–488.CrossRefGoogle Scholar
  46. 46.
    Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, et al. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014, 40: 532–541.CrossRefGoogle Scholar
  47. 47.
    Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011, 16: 429–441.CrossRefGoogle Scholar
  48. 48.
    Guella I, Vawter MP. Allelic imbalance associated with the schizophrenia risk SNP rs1344706 indicates a cis-acting variant in ZNF804A. Schizophr Res 2014, 153: 243–245.CrossRefGoogle Scholar
  49. 49.
    Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ, et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res 2014, 152: 111–116.CrossRefGoogle Scholar
  50. 50.
    Xu Q, Xiong Y, Yuan C, Liu F, Zhao F, Shen J, et al. ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2018, 12: 13–19.CrossRefGoogle Scholar
  51. 51.
    Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology 1996, 14: 1–17.CrossRefGoogle Scholar
  52. 52.
    Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992, 149: 890–897.CrossRefGoogle Scholar
  53. 53.
    Turner JA, Damaraju E, van Erp TG, Mathalon DH, Ford JM, Voyvodic J, et al. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013, 7: 137.Google Scholar
  54. 54.
    Cui L, Gong X, Tang Y, Kong L, Chang M, Geng H, et al. Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast 2016, 2016: 9162590.CrossRefGoogle Scholar
  55. 55.
    Bearden CE, Jawad AF, Lynch DR, Sokol S, Kanes SJ, McDonald-McGinn DM, et al. Effects of a functional COMT polymorphism on prefrontal cognitive function in patients with 22q11.2 deletion syndrome. Am J Psychiatry 2004, 161: 1700–1702.Google Scholar
  56. 56.
    Zhang Y, Yan H, Liao J, Yu H, Jiang S, Liu Q, et al. ZNF804A variation may affect hippocampal-prefrontal resting-state functional connectivity in schizophrenic and healthy individuals. Neurosci Bull 2018, 34: 507–516.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Lingling Cui
    • 1
    • 2
  • Fei Wang
    • 1
    • 3
    • 4
  • Miao Chang
    • 1
    • 4
  • Zhiyang Yin
    • 3
    • 4
  • Guoguang Fan
    • 1
  • Yanzhuo Song
    • 3
    • 4
  • Yange Wei
    • 3
    • 4
  • Yixiao Xu
    • 3
    • 4
  • Yifan Zhang
    • 3
    • 4
  • Yanqing Tang
    • 3
    • 4
    • 5
    Email author
  • Xiaohong Gong
    • 2
    Email author
  • Ke Xu
    • 1
    Email author
  1. 1.Department of RadiologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
  2. 2.State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
  3. 3.Department of PsychiatryThe First Affiliated Hospital of China Medical UniversityShenyangChina
  4. 4.Brain Function Research SectionThe First Affiliated Hospital of China Medical UniversityShenyangChina
  5. 5.Department of GeriatricsThe First Affiliated Hospital of China Medical UniversityShenyangChina

Personalised recommendations