Advertisement

Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury

  • Qian Huang
  • Wanru Duan
  • Eellan Sivanesan
  • Shuguang Liu
  • Fei Yang
  • Zhiyong Chen
  • Neil C. Ford
  • Xueming Chen
  • Yun GuanEmail author
Review

Abstract

In addition to restoration of bladder, bowel, and motor functions, alleviating the accompanying debilitating pain is equally important for improving the quality of life of patients with spinal cord injury (SCI). Currently, however, the treatment of chronic pain after SCI remains a largely unmet need. Electrical spinal cord stimulation (SCS) has been used to manage a variety of chronic pain conditions that are refractory to pharmacotherapy. Yet, its efficacy, benefit profiles, and mechanisms of action in SCI pain remain elusive, due to limited research, methodological weaknesses in previous clinical studies, and a lack of mechanistic exploration of SCS for SCI pain control. We aim to review recent studies and outline the therapeutic potential of different SCS paradigms for traumatic SCI pain. We begin with an overview of its manifestations, classification, potential underlying etiology, and current challenges for its treatment. The clinical evidence for using SCS in SCI pain is then reviewed. Finally, future perspectives of pre-clinical research and clinical study of SCS for SCI pain treatment are discussed.

Keywords

Pain Trauma Spinal cord injury Spinal cord stimulation Neuromodulation Analgesia 

Notes

Acknowledgements

This review was supported by grants from the National Institutes of Health, Bethesda, MD (R01NS70814 and R21NS99879 to YG). The authors thank Claire F. Levine, MS, ELS (Scientific Editor, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University) for editing the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs 2017, 77: 967–984.PubMedCrossRefGoogle Scholar
  2. 2.
    Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma 2016, 33: 482–492.PubMedCrossRefGoogle Scholar
  3. 3.
    Melzack R, Wall PD. Evolution of pain theories. Int Anesthesiol Clin 1970, 8: 3–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965, 150: 971–979.PubMedCrossRefGoogle Scholar
  5. 5.
    Chakravarthy K, Richter H, Christo PJ, Williams K, Guan Y. Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy. Neuromodulation 2018, 21: 10–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Geurts JW, Joosten EA, van Kleef KM. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain 2017, 158: 771–774.PubMedCrossRefGoogle Scholar
  7. 7.
    Linderoth B, Foreman RD. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation 2017, 20: 525–533.PubMedCrossRefGoogle Scholar
  8. 8.
    Shealy CN, Mortimer JT, Hagfors NR. Dorsal column electroanalgesia. J Neurosurg 1970, 32: 560–564.PubMedCrossRefGoogle Scholar
  9. 9.
    Shu B, Yang F, Guan Y. Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury. Med Hypotheses 2017, 104: 73–77.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chari A, Hentall ID, Papadopoulos MC, Pereira EA. Surgical neurostimulation for spinal cord injury. Brain Sci 2017, 7: 18–35.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP et al. The International Spinal Cord Injury Pain Basic Data Set (version 2.0). Spinal Cord 2014, 52: 282–286.PubMedCrossRefGoogle Scholar
  12. 12.
    Bryce TN, Ragnarsson KT. Pain after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11: 157–168.PubMedCrossRefGoogle Scholar
  13. 13.
    Bryce TN, Budh CN, Cardenas DD, Dijkers M, Felix ER, Finnerup NB, et al. Pain after spinal cord injury: an evidence-based review for clinical practice and research. Report of the National Institute on Disability and Rehabilitation Research Spinal Cord Injury Measures meeting. J Spinal Cord Med 2007, 30: 421–440.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives. Neurotherapeutics 2018, 15: 635–653.CrossRefGoogle Scholar
  15. 15.
    Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med 2009, 52: 124–141.PubMedCrossRefGoogle Scholar
  16. 16.
    Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 2009, 46: 13–29.PubMedCrossRefGoogle Scholar
  17. 17.
    Widerstrom-Noga E, Biering-Sorensen F, Bryce T, Cardenas DD, Finnerup NB, Jensen MP, et al. The international spinal cord injury pain basic data set. Spinal Cord 2008, 46: 818–823.PubMedCrossRefGoogle Scholar
  18. 18.
    Widerstrom-Noga E, Biering-Sorensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, et al. The International Spinal Cord Injury Pain Extended Data Set (Version 1.0). Spinal Cord 2016, 54: 1036–1046.PubMedCrossRefGoogle Scholar
  19. 19.
    Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain 2017, 21: 29–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, et al. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2010, 27: 1697–1707.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003, 103: 249–257.PubMedCrossRefGoogle Scholar
  22. 22.
    Siddall PJ, Loeser JD. Pain following spinal cord injury. Spinal Cord 2001, 39: 63–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord 2012, 50: 413–417.PubMedCrossRefGoogle Scholar
  24. 24.
    Modirian E, Pirouzi P, Soroush M, Karbalaei-Esmaeili S, Shojaei H, Zamani H. Chronic pain after spinal cord injury: results of a long-term study. Pain Med 2010, 11: 1037–1043.PubMedCrossRefGoogle Scholar
  25. 25.
    Finnerup NB, Jensen MP, Norrbrink C, Trok K, Johannesen IL, Jensen TS, et al. A prospective study of pain and psychological functioning following traumatic spinal cord injury. Spinal Cord 2016, 54: 816–821.PubMedCrossRefGoogle Scholar
  26. 26.
    Penas C, Navarro X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018, 12: 158.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014, 258: 48–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Yezierski RP. Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev 2009, 46: 95–107.PubMedCrossRefGoogle Scholar
  29. 29.
    Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009, 60: 202–213.PubMedCrossRefGoogle Scholar
  30. 30.
    Burchiel KJ, Hsu FP. Pain and spasticity after spinal cord injury: mechanisms and treatment. Spine (Phila Pa 1976) 2001, 26: S146–S160.CrossRefGoogle Scholar
  31. 31.
    Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett 2004, 361: 232–236.PubMedCrossRefGoogle Scholar
  32. 32.
    Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2011, 15: 215–222.PubMedCrossRefGoogle Scholar
  33. 33.
    Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, et al. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009, 147: 265–276.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gosselin RD, Suter MR, Ji RR, Decosterd I. Glial cells and chronic pain. Neuroscientist 2010, 16: 519–531.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhou LJ, Liu XG. Glial activation, a common mechanism underlying spinal synaptic plasticity? Neurosci Bull 2017, 33: 121–123.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013, 154 Suppl 1: S10–S28.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kerasidis H, Wrathall JR, Gale K. Behavioral assessment of functional deficit in rats with contusive spinal cord injury. J Neurosci Methods 1987, 20: 167–179.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Vierck CJ Jr, Siddall P, Yezierski RP. Pain following spinal cord injury: animal models and mechanistic studies. Pain 2000, 89: 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998, 75: 141–155.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 2010, 27: 729–737.PubMedCrossRefGoogle Scholar
  41. 41.
    Kalous A, Osborne PB, Keast JR. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J Comp Neurol 2009, 513: 668–684.PubMedCrossRefGoogle Scholar
  42. 42.
    Hao JX, Kupers RC, Xu XJ. Response characteristics of spinal cord dorsal horn neurons in chronic allodynic rats after spinal cord injury. J Neurophysiol 2004, 92: 1391–1399.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007, 27: 8893–8902.PubMedCrossRefGoogle Scholar
  44. 44.
    Hains BC, Saab CY, Waxman SG. Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol 2006, 95: 3343–3352.PubMedCrossRefGoogle Scholar
  45. 45.
    Gwak YS, Kim HK, Kim HY, Leem JW. Bilateral hyperexcitability of thalamic VPL neurons following unilateral spinal injury in rats. J Physiol Sci 2010, 60: 59–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Crown ED, Gwak YS, Ye Z, Johnson KM, Hulsebosch CE. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury. Exp Neurol 2008, 213: 257–267.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006, 26: 4308–4317.PubMedCrossRefGoogle Scholar
  48. 48.
    Gwak YS, Hulsebosch CE. Upregulation of group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp Neurol 2005, 195: 236–243.PubMedCrossRefGoogle Scholar
  49. 49.
    Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839.PubMedCrossRefGoogle Scholar
  50. 50.
    Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010, 16: 302–307.PubMedCrossRefGoogle Scholar
  51. 51.
    Liabeuf S, Stuhl-Gourmand L, Gackiere F, Mancuso R, Sanchez Brualla I, Marino P, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma 2017, 34: 3397–3406.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 2018, 174: 521–535.PubMedCrossRefGoogle Scholar
  53. 53.
    Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, et al. BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair 2015, 29: 677–689.PubMedCrossRefGoogle Scholar
  54. 54.
    Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009, 12: 1285–1292.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science 2016, 354: 1144–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2012, 234: 362–372.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282: 14975–14983.PubMedCrossRefGoogle Scholar
  58. 58.
    Hains BC, Waxman SG. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res 2007, 161: 195–203.PubMedCrossRefGoogle Scholar
  59. 59.
    Bedi SS, Yang Q, Crook RJ, Du J, Wu Z, Fishman HM, et al. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010, 30: 14870–14882.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Miranpuri GS, Meethal SV, Sampene E, Chopra A, Buttar S, Nacht C, et al. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann Neurosci 2017, 24: 74–81.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015, 30: 645–658.PubMedCrossRefGoogle Scholar
  62. 62.
    Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015, 38: 237–246.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Turtle JD, Strain MM, Aceves M, Huang YJ, Reynolds JA, Hook MA, et al. Pain input impairs recovery after spinal cord injury: treatment with lidocaine. J Neurotrauma 2017, 34: 1200–1208.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI. A patient survey. Spinal Cord 2000, 38: 611–614.PubMedCrossRefGoogle Scholar
  65. 65.
    Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs 2008, 22: 455–475.PubMedCrossRefGoogle Scholar
  66. 66.
    Mehta S, McIntyre A, Janzen S, Loh E, Teasell R. Systematic review of pharmacologic treatments of pain after spinal cord injury: an update. Arch Phys Med Rehabil 2016, 97: 1381–1391.PubMedCrossRefGoogle Scholar
  67. 67.
    Teasell RW, Mehta S, Aubut JA, Foulon B, Wolfe DL, Hsieh JT, et al. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil 2010, 91: 816–831.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Warms CA, Turner JA, Marshall HM, Cardenas DD. Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain 2002, 18: 154–163.PubMedCrossRefGoogle Scholar
  69. 69.
    Cardenas DD, Felix ER. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment. PM R 2009, 1: 1077–1090.PubMedCrossRefGoogle Scholar
  70. 70.
    Sjolund BH. Pain and rehabilitation after spinal cord injury: the case of sensory spasticity? Brain Res Brain Res Rev 2002, 40: 250–256.PubMedCrossRefGoogle Scholar
  71. 71.
    Canavero S, Bonicalzi V. Neuromodulation for central pain. Expert Rev Neurother 2003, 3: 591–607.PubMedCrossRefGoogle Scholar
  72. 72.
    Sadowsky CL. Electrical stimulation in spinal cord injury. NeuroRehabilitation 2001, 16: 165–169.PubMedGoogle Scholar
  73. 73.
    Dworkin RH, O’Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 2013, 154: 2249–2261.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lagauche D, Facione J, Albert T, Fattal C. The chronic neuropathic pain of spinal cord injury: which efficiency of neuropathic stimulation? Ann Phys Rehabil Med 2009, 52: 180–187.PubMedCrossRefGoogle Scholar
  75. 75.
    Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 2009, 47: 352–359.PubMedCrossRefGoogle Scholar
  76. 76.
    Kumar K, Toth C, Nath RK. Spinal cord stimulation for chronic pain in peripheral neuropathy. Surg Neurol 1996, 46: 363–369.PubMedCrossRefGoogle Scholar
  77. 77.
    Guan Y. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr Pain Headache Rep 2012, 16: 217–225.PubMedCrossRefGoogle Scholar
  78. 78.
    Shechter R, Yang F, Xu Q, Cheong YK, He SQ, Sdrulla A, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology 2013, 119: 422–432.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Shealy CN. Dorsal column stimulation. Surg Neurol 1977, 7: 192.PubMedGoogle Scholar
  80. 80.
    Costigan M, Woolf CJ. No DREAM, No pain. Closing the spinal gate. Cell 2002, 108: 297–300.PubMedGoogle Scholar
  81. 81.
    Kapural L. Spinal cord stimulation for intractable chronic pain. Curr Pain Headache Rep 2014, 18: 406.PubMedCrossRefGoogle Scholar
  82. 82.
    Falowski S, Sharan A. A review on spinal cord stimulation. J Neurosurg Sci 2012, 56: 287–298.PubMedGoogle Scholar
  83. 83.
    Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation 2014, 17: 226–234.PubMedCrossRefGoogle Scholar
  84. 84.
    Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 2012, 107: 87–119.PubMedCrossRefGoogle Scholar
  85. 85.
    Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, et al. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113: 1392–1405.PubMedCrossRefGoogle Scholar
  86. 86.
    Narikawa K, Furue H, Kumamoto E, Yoshimura M. In vivo patch-clamp analysis of IPSCs evoked in rat substantia gelatinosa neurons by cutaneous mechanical stimulation. J Neurophysiol 2000, 84: 2171–2174.PubMedCrossRefGoogle Scholar
  87. 87.
    Shimoji K, Shimizu H, Maruyama Y, Matsuki M, Kuribayashi H, Fujioka H. Dorsal column stimulation in man: facilitation of primary afferent depolarization. Anesth Analg 1982, 61: 410–413.PubMedCrossRefGoogle Scholar
  88. 88.
    Olsson GL, Meyerson BA, Linderoth B. Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPS-I). Eur J Pain 2008, 12: 53–59.PubMedCrossRefGoogle Scholar
  89. 89.
    Carter ML. Spinal cord stimulation in chronic pain: a review of the evidence. Anaesth Intensive Care 2004, 32: 11–21.PubMedGoogle Scholar
  90. 90.
    Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132: 179–188.PubMedCrossRefGoogle Scholar
  91. 91.
    Meyerson BA, Linderoth B. Mode of action of spinal cord stimulation in neuropathic pain. J Pain Symptom Manage 2006, 31: S6–S12.PubMedCrossRefGoogle Scholar
  92. 92.
    De Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 2016, 19: 47–59.PubMedCrossRefGoogle Scholar
  93. 93.
    de Vos CC, Bom MJ, Vanneste S, Lenders MW, De Ridder RD. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014, 17: 152–159.PubMedCrossRefGoogle Scholar
  94. 94.
    De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg 2013, 80: 642–649.PubMedCrossRefGoogle Scholar
  95. 95.
    Hou S, Kemp K, Grabois M. A systematic evaluation of burst spinal cord stimulation for chronic back and limb pain. Neuromodulation 2016, 19: 398–405.PubMedCrossRefGoogle Scholar
  96. 96.
    Van HT, Vancamp T, Van LP, Vanneste S, De Ridder D. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation. Neuromodulation 2015, 18: 9–12.CrossRefGoogle Scholar
  97. 97.
    Tang R, Martinez M, Goodman-Keiser M, Farber JP, Qin C, Foreman RD. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model. Neuromodulation 2014, 17: 143–151.PubMedCrossRefGoogle Scholar
  98. 98.
    Gong WY, Johanek LM, Sluka KA. A comparison of the effects of burst and tonic spinal cord stimulation on hyperalgesia and physical activity in an animal model of neuropathic pain. Anesth Analg 2016, 112: 1178–1185.CrossRefGoogle Scholar
  99. 99.
    Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZA-RCT randomized controlled trial. Anesthesiology 2015, 123: 851–860.PubMedCrossRefGoogle Scholar
  100. 100.
    Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med 2014, 15: 347–354.PubMedCrossRefGoogle Scholar
  101. 101.
    Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation 2013, 16: 59–65.PubMedCrossRefGoogle Scholar
  102. 102.
    Verrills P, Sinclair C, Barnard A. A review of spinal cord stimulation systems for chronic pain. J Pain Res 2016, 9: 481–492.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Perruchoud C, Eldabe S, Batterham AM, Madzinga G, Brookes M, Durrer A, et al. Analgesic efficacy of high-frequency spinal cord stimulation: a randomized double-blind placebo-controlled study. Neuromodulation 2013, 16: 363–369.PubMedCrossRefGoogle Scholar
  104. 104.
    Annemans L, Van Buyten JP, Smith T, Al-Kaisy A. Cost effectiveness of a novel 10 kHz high-frequency spinal cord stimulation system in patients with failed back surgery syndrome (FBSS). J Long Term Eff Med Implants 2014, 24: 173–183.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolter T. Spinal cord stimulation for neuropathic pain: current perspectives. J Pain Res 2014, 7: 651–663.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Crosby ND, Janik JJ, Grill WM. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J Neurophysiol 2017, 117: 136–147.PubMedCrossRefGoogle Scholar
  107. 107.
    Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy. IEEE Trans Biomed Eng 2015, 62: 1604–1613.PubMedCrossRefGoogle Scholar
  108. 108.
    Tator CH, Minassian K, Mushahwar VK. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury. Handb Clin Neurol 2012, 109: 283–296.PubMedCrossRefGoogle Scholar
  109. 109.
    Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, et al. Spinal cord stimulation for spasticity: historical approaches, current status, and future directions. Neuromodulation 2017, 20: 307–321.PubMedCrossRefGoogle Scholar
  110. 110.
    Gater DR Jr, Dolbow D, Tsui B, Gorgey AS. Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 2011, 28: 231–248.PubMedGoogle Scholar
  111. 111.
    Eldabe S, Thomson S, Duarte R, Brookes M, Belder M, Raphael J, et al. The effectiveness and cost-effectiveness of spinal cord stimulation for refractory angina (RASCAL Study): A pilot randomized controlled trial. Neuromodulation 2016, 19: 60–70.PubMedCrossRefGoogle Scholar
  112. 112.
    Saraste A, Ukkonen H, Varis A, Vasankari T, Tunturi S, Taittonen M, et al. Effect of spinal cord stimulation on myocardial perfusion reserve in patients with refractory angina pectoris. Eur Heart J Cardiovasc Imaging 2015, 16: 449–455.PubMedCrossRefGoogle Scholar
  113. 113.
    Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation 2011, 14: 423–426.PubMedCrossRefGoogle Scholar
  114. 114.
    Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol 2018, 9: 565.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018, 8: 8688.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kowalski KE, Romaniuk JR, Brose SW, Richmond MA, Kowalski T, DiMarco AF. High frequency spinal cord stimulation-New method to restore cough. Respir Physiol Neurobiol 2016, 232: 54–56.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE. Case report: Minimally invasive method to activate the expiratory muscles to restore cough. J Spinal Cord Med 2018, 41: 562–566.PubMedCrossRefGoogle Scholar
  118. 118.
    Nashold BS Jr, Friedman H. Dorsal column stimulation for control of pain. Preliminary report on 30 patients. J Neurosurg 1972, 36: 590–597.PubMedCrossRefGoogle Scholar
  119. 119.
    Meglio M, Cioni B, Rossi GF. Spinal cord stimulation in management of chronic pain. A 9-year experience. J Neurosurg 1989, 70: 519–524.PubMedCrossRefGoogle Scholar
  120. 120.
    Buchhaas U, Koulousakis A, Nittner K. Experience with spinal cord stimulation (SCS) in the management of chronic pain in a traumatic transverse lesion syndrome. Neurosurg Rev 1989, 12 Suppl 1: 582–587.PubMedCrossRefGoogle Scholar
  121. 121.
    Meglio M, Cioni B, Prezioso A, Talamonti G. Spinal cord stimulation (SCS) in deafferentation pain. Pacing Clin Electrophysiol 1989, 12: 709–712.PubMedCrossRefGoogle Scholar
  122. 122.
    North RB, Kidd DH, Zahurak M, James CS, Long DM. Spinal cord stimulation for chronic, intractable pain: experience over two decades. Neurosurgery 1993, 32: 384–394.PubMedCrossRefGoogle Scholar
  123. 123.
    Tasker RR, DeCarvalho GT, Dolan EJ. Intractable pain of spinal cord origin: clinical features and implications for surgery. J Neurosurg 1992, 77: 373–378.PubMedCrossRefGoogle Scholar
  124. 124.
    Cioni B, Meglio M, Pentimalli L, Visocchi M. Spinal cord stimulation in the treatment of paraplegic pain. J Neurosurg 1995, 82: 35–39.PubMedCrossRefGoogle Scholar
  125. 125.
    Kumar K, Toth C, Nath RK, Laing P. Epidural spinal cord stimulation for treatment of chronic pain–some predictors of success. A 15-year experience. Surg Neurol 1998, 50: 110–120.PubMedCrossRefGoogle Scholar
  126. 126.
    Shimoji K, Hokari T, Kano T, Tomita M, Kimura R, Watanabe S, et al. Management of intractable pain with percutaneous epidural spinal cord stimulation: differences in pain-relieving effects among diseases and sites of pain. Anesth Analg 1993, 77: 110–116.PubMedCrossRefGoogle Scholar
  127. 127.
    Levine AB, Parrent AG, MacDougall KW. Cervical spinal cord and dorsal nerve root stimulation for neuropathic upper limb pain. Can J Neurol Sci 2017, 44: 83–89.PubMedCrossRefGoogle Scholar
  128. 128.
    Brill S, Aryeh IG. Neuromodulation in the management of pain from brachial plexus injury. Pain Physician 2008, 11: 81–85.PubMedGoogle Scholar
  129. 129.
    Richardson RR, Meyer PR, Cerullo LJ. Neurostimulation in the modulation of intractable paraplegic and traumatic neuroma pains. Pain 1980, 8: 75–84.PubMedCrossRefGoogle Scholar
  130. 130.
    Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 2012, 215: 196–208.PubMedCrossRefGoogle Scholar
  131. 131.
    Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015, 156: 1008–1017.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Yang F, Xu Q, Shu B, Tiwari V, He SQ, Vera-Portocarrero LP, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Abeta-fiber stimulation. Pain 2016, 157: 2582–2593.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhang H, Xie W, Xie Y. Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Res 2005, 1055: 103–110.PubMedCrossRefGoogle Scholar
  134. 134.
    Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 2003, 970: 238–241.PubMedCrossRefGoogle Scholar
  135. 135.
    Reck TA, Landmann G. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report. Spinal Cord Ser Cases 2017, 3: 17049.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med 2016, 17: 325–336.PubMedGoogle Scholar
  137. 137.
    Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 515–550.PubMedCrossRefGoogle Scholar
  138. 138.
    Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 2004, 100: 254–267.PubMedGoogle Scholar
  139. 139.
    Levy R, Henderson J, Slavin K, Simpson BA, Barolat G, Shipley J, et al. Incidence and avoidance of neurologic complications with paddle type spinal cord stimulation leads. Neuromodulation 2011, 14: 412–422.PubMedCrossRefGoogle Scholar
  140. 140.
    Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967, 46: 489–491.PubMedGoogle Scholar
  141. 141.
    Franzini A, Ferroli P, Marras C, Broggi G. Huge epidural hematoma after surgery for spinal cord stimulation. Acta Neurochir (Wien) 2005, 147: 565–567.CrossRefGoogle Scholar
  142. 142.
    McKinney MC, Kulesa PM. In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3. Dev Biol 2011, 358: 309–317.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Anderson M, Zheng Q, Dong X. Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 2018, 34: 194–199.PubMedCrossRefGoogle Scholar
  144. 144.
    Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, et al. The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17: 599–615.PubMedCrossRefGoogle Scholar
  145. 145.
    Xie YF, Wang J, Bonin RP. Optogenetic exploration and modulation of pain processing. Exp Neurol 2018, 306: 117–121.PubMedCrossRefGoogle Scholar
  146. 146.
    Rahman MH, Nam Y, Kim JH, Lee WH, Suk K. Optogenetics of the spinal cord: use of channelrhodopsin proteins for interrogation of spinal cord circuits. Curr Protein Pept Sci 2018, 19: 714–724.PubMedCrossRefGoogle Scholar
  147. 147.
    Ropero Pelaez FJ, Taniguchi S. The Gate Theory of Pain revisited: modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016, 2016: 4131395.PubMedCrossRefGoogle Scholar
  148. 148.
    Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 2015, 122: 1362–1376.PubMedCrossRefGoogle Scholar
  149. 149.
    Drew GM, Siddall PJ, Duggan AW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 2004, 109: 379–388.PubMedCrossRefGoogle Scholar
  150. 150.
    Krishna V, Andrews H, Jin X, Yu J, Varma A, Wen X, et al. A contusion model of severe spinal cord injury in rats. J Vis Exp 2013, 78: e50111.Google Scholar
  151. 151.
    King T, Qu C, Okun A, Mercado R, Ren J, Brion T, et al. Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity. Pain 2011, 152: 1997–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9: 807–819.PubMedCrossRefGoogle Scholar
  153. 153.
    Christensen MD, Hulsebosch CE. Chronic central pain after spinal cord injury. J Neurotrauma 1997, 14: 517–537.PubMedCrossRefGoogle Scholar
  154. 154.
    Meier K. Spinal cord stimulation: Background and clinical application. Scand J Pain 2017, 5: 175–181.CrossRefGoogle Scholar
  155. 155.
    Norrbrink BC, Lundeberg T. Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med 2004, 12: 189–197.CrossRefGoogle Scholar
  156. 156.
    Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, et al. Changes in pain processing in the spinal cord and brainstem after spinal cord injury characterized by functional magnetic resonance imaging. J Neurotrauma 2016, 33: 1450–1460.PubMedCrossRefGoogle Scholar
  157. 157.
    Howell B, Lad SP, Grill WM. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One 2014, 9: e114938.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013, 8: e56266.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Flouty O, Oya H, Kawasaki H, Wilson S, Reddy CG, Jeffery ND, et al. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Meas 2012, 33: 2003–2015.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Walters BC. Oscillating field stimulation in the treatment of spinal cord injury. PM R 2010, 2: S286–S291.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Deer T, Kim C, Bowman R, Ranson M, Douglas CS, Tolentino W. Spinal cord stimulation as a method of reducing opioids in severe chronic pain: a case report and review of the literature. W V Med J 2010, 106: 56–59.PubMedPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2018

Authors and Affiliations

  • Qian Huang
    • 1
  • Wanru Duan
    • 1
    • 2
  • Eellan Sivanesan
    • 1
  • Shuguang Liu
    • 1
    • 3
  • Fei Yang
    • 4
  • Zhiyong Chen
    • 1
  • Neil C. Ford
    • 1
  • Xueming Chen
    • 5
  • Yun Guan
    • 1
    • 6
    Email author
  1. 1.Department of Anesthesiology and Critical Care Medicine, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
  3. 3.Department of Orthopedics, Hong Hui Hospital, Affiliated Hospital of the Medical SchoolXi’an Jiaotong UniversityXi’anChina
  4. 4.Department of NeurobiologyCapital Medical UniversityBeijingChina
  5. 5.Department of Orthopedics, Luhe HospitalCapital Medical UniversityBeijingChina
  6. 6.Department of Neurological Surgery, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations