Neuroscience Bulletin

, Volume 35, Issue 1, pp 133–144 | Cite as

Autonomic Disturbances in Acute Cerebrovascular Disease

  • Jun Mo
  • Lei Huang
  • Jianhua Peng
  • Umut Ocak
  • Jianmin ZhangEmail author
  • John H. ZhangEmail author


Autonomic disturbances often occur in patients with acute cerebrovascular disease due to damage of the central autonomic network. We summarize the structures of the central autonomic network and the clinical tests used to evaluate the functions of the autonomic nervous system. We review the clinical and experimental findings as well as management strategies of post-stroke autonomic disturbances including electrocardiographic changes, cardiac arrhythmias, myocardial damage, thermoregulatory dysfunction, gastrointestinal dysfunction, urinary incontinence, sexual disorders, and hyperglycemia. The occurrence of autonomic disturbances has been associated with poor outcomes in stroke patients. Autonomic nervous system modulation appears to be an emerging therapeutic strategy for stroke management in addition to treatments for sensorimotor dysfunction.


Autonomic disturbance Autonomic nervous system Cerebrovascular disease Stroke 



This review was supported partly by grants from the National Institutes of Health, USA (NS081740 and NS082184).


  1. 1.
    Xiong L, Tian G, Leung H, Soo YOY, Chen X, Ip VHL, et al. Autonomic dysfunction predicts clinical outcomes after acute ischemic stroke: a prospective observational study. Stroke 2018, 49: 215–218.Google Scholar
  2. 2.
    McLaren A, Kerr S, Allan L, Steen IN, Ballard C, Allen J, et al. Autonomic function is impaired in elderly stroke survivors. Stroke 2005, 36: 1026–1030.Google Scholar
  3. 3.
    Korpelainen JT, Sotaniemi KA, Myllylä VV. Autonomic nervous system disorders in stroke. Clin Auton Res 1999, 9: 325–333.Google Scholar
  4. 4.
    Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update. J Vasc Interv Neurol 2015, 8: 43–52.Google Scholar
  5. 5.
    Cersosimo MG, Benarroch EE. Central control of autonomic function and involvement in neurodegenerative disorders. In: Handbook of Clinical Neurology. 3rd ed. Elsevier, 2013: 45–57.Google Scholar
  6. 6.
    Benarroch EE. The autonomic nervous system: basic anatomy and physiology. Continuum 2007, 13: 13–32.Google Scholar
  7. 7.
    Bankenahally R, Krovvidi H. Autonomic nervous system: anatomy, physiology, and relevance in anaesthesia and critical care medicine. BJA Educ 2016, 16: 381–387.Google Scholar
  8. 8.
    Alawieh A, Tomlinson S, Adkins D, Kautz S, Feng W. Preclinical and clinical evidence on ipsilateral corticospinal projections: implication for motor recovery. Transl Stroke Res 2017, 8: 529–540.Google Scholar
  9. 9.
    Sykora M, Diedler J, Turcani P, Hacke W, Steiner T. Baroreflex: a new therapeutic target in human stroke? Stroke 2009, 40: e678–e682.Google Scholar
  10. 10.
    Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc 1993, 68: 988–1001.Google Scholar
  11. 11.
    Craig A. A new view of pain as a homeostatic emotion. Trends Neurosci 2003, 26: 303–307.Google Scholar
  12. 12.
    Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 2002, 25: 433–469.Google Scholar
  13. 13.
    Lu C, Yang T, Zhao H, Zhang M, Meng F, Fu H, et al. Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci Bull 2016, 32: 191–201.Google Scholar
  14. 14.
    Reddan MC, Wager TD. Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull 2018, 34: 208–215.Google Scholar
  15. 15.
    Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens 2010, 4: 174–182.Google Scholar
  16. 16.
    Critchley HD. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. Int J Psychophysiol 2009, 73: 88–94.Google Scholar
  17. 17.
    Vogt BA, Vogt L, Farber NB, Bush G. Architecture and neurocytology of monkey cingulate gyrus. J Comp Neurol 2005, 485: 218–239.Google Scholar
  18. 18.
    LeDoux J. The amygdala. Curr Biol 2007, 17: R868–R874.Google Scholar
  19. 19.
    Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci 1992, 15: 353–375.Google Scholar
  20. 20.
    Misslin R. The defense system of fear: behavior and neurocircuitry. Neurophysiol Clin 2003, 33: 55–66.Google Scholar
  21. 21.
    Benarroch EE. Central autonomic control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (Ed.). Primer on the Autonomic Nervous System. 3rd ed. Academic Press, 2012: 9–12.Google Scholar
  22. 22.
    Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol 2006, 68: 279–305.Google Scholar
  23. 23.
    Chen L, Li C, Zhai J, Wang A, Song Q, Liu Y, et al. Altered resting-state signals in patients with acute stroke in or under the thalamus. Neurosci Bull 2016, 32: 585–590.Google Scholar
  24. 24.
    Dampney RAL, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol 2003, 71: 359–384.Google Scholar
  25. 25.
    McLeod JG, Tuck RR. Disorders of the autonomic nervous system: part 2. Investigation and treatment. Ann Neurol 1987, 21: 519–529.Google Scholar
  26. 26.
    Low PA. Testing the autonomic nervous system. Semin Neurol 2003, 23: 407–422.Google Scholar
  27. 27.
    Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci 2010, 6: 11–18.Google Scholar
  28. 28.
    Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllylä VV. Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke 1996, 27: 2059–2063.Google Scholar
  29. 29.
    Yperzeele L, van Hooff RJ, Nagels G, De Smedt A, De Keyser J, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: a systematic review. Int J Stroke 2015, 10: 796–800.Google Scholar
  30. 30.
    De Raedt S, De Vos A, De Keyser J. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area? J Neurol Sci 2015, 348: 24–34.Google Scholar
  31. 31.
    Cohen J, Low P, Fealey R, Sheps S, Jiang NS. Somatic and autonomic function in progressive autonomic failure and multiple system atrophy. Ann Neurol 1987, 22: 692–699.Google Scholar
  32. 32.
    Myers MG, Norris JW, Hachniski VC, Sole MJ. Plasma norepinephrine in stroke. Stroke 1981, 12: 200–204.Google Scholar
  33. 33.
    Naredi S, Lambert G, Edén E, Zäll S, Runnerstam M, Rydenhag B, et al. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke 2000, 31: 901–906.Google Scholar
  34. 34.
    Togha M, Sharifpour A, Ashraf H, Moghadam M, Sahraian MA. Electrocardiographic abnormalities in acute cerebrovascular events in patients with/without cardiovascular disease. Ann Indian Acad Neurol 2013, 16: 66–71.Google Scholar
  35. 35.
    Ramani A, Shetty U, Kundaje GN. Electrocardiographic abnormalities in cerebrovascular accidents. Angiology 1990, 41: 681–686.Google Scholar
  36. 36.
    Raad B, Sila C. Cardiac manifestations of neurologic disorders. Continuum 2011, 17: 13–26.Google Scholar
  37. 37.
    Ay H, Koroshetz WJ, Benner T, Vangel MG, Melinosky C, Arsava EM, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology 2006, 66: 1325–1329.Google Scholar
  38. 38.
    Cechetto DF, Hachinski V. Cardiovascular consequence of experimental stroke. Baillieres Clin Neurol 1997, 6: 297–308.Google Scholar
  39. 39.
    Oppenheimer S. The insular cortex and the pathophysiology of stroke-induced cardiac changes. Can J Neurol Sci 1992, 19: 208–211.Google Scholar
  40. 40.
    Rincon F, Dhamoon M, Moon Y, Paik MC, Boden-Albala B, Homma S, et al. Stroke location and association with fatal cardiac outcomes: Northern Manhattan Study (NOMAS). Stroke 2008, 39: 2425–2431.Google Scholar
  41. 41.
    van Bree MDR, Roos YWEM, van der Bilt IAC, Wilde AAM, Sprengers MES, Gans K, et al. Prevalence and characterization of ECG abnormalities after intracerebral hemorrhage. Neurocrit Care 2010, 12: 50–55.Google Scholar
  42. 42.
    Christensen H, Boysen G, Christensen AF, Johannesen HH. Insular lesions, ECG abnormalities, and outcome in acute stroke. J Neurol Neurosurg Psychiatry 2005, 76: 269–271.Google Scholar
  43. 43.
    Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med 2006, 259: 592–597.Google Scholar
  44. 44.
    Cruickshank JM, Neil-Dwyer G, Stott AW. Possible role of catecholamines, corticosteroids, and potassium in production of electrocardiographic abnormalities associated with subarachnoid haemorrhage. Br Heart J 1974, 36: 697–706.Google Scholar
  45. 45.
    Goldstein DS. The electrocardiogram in stroke: relationship to pathophysiological type and comparison with prior tracings. Stroke 1979, 10: 253–259.Google Scholar
  46. 46.
    Hachinski VC, Wilson JX, Smith KE, Cechetto DF. Effect of age on autonomic and cardiac responses in a rat stroke model. Arch Neurol 1992, 49: 690–696.Google Scholar
  47. 47.
    Verberne AJM, Owens NC. Cortical modulation of the cardiovascular system. Prog Neurobiol 1998, 54: 149–168.Google Scholar
  48. 48.
    Eisalo A, Peräsalo J, Halonen PI. Electrocardiographic abnormalities and some laboratory findings in patients with subarachnoid haemorrhage. Br Heart J 1972, 34: 217–226.Google Scholar
  49. 49.
    Popescu D, Laza C, Mergeani A, Bajenaru OA, Antochi FA. Lead electrocardiogram changes after supratentorial intracerebral hemorrhage. Maedica 2012, 7: 290–294.Google Scholar
  50. 50.
    Estanol BV, Marin OSM. Cardiac arrhythmias and sudden death in subarachnoid hemorrhage. Stroke 1975, 6: 382–386.Google Scholar
  51. 51.
    Frontera JA, Parra A, Shimbo D, Fernandez A, Schmidt JM, Peter P, et al. Cardiac arrhythmias after subarachnoid hemorrhage: risk factors and impact on outcome. Cerebrovasc Dis 2008, 26: 71–78.Google Scholar
  52. 52.
    Arruda WO, de Lacerda JFS. Electrocardiographic findings in acute cerebrovascular hemorrhage. Arg Neuropsiquiatr 1992, 50: 269–274.Google Scholar
  53. 53.
    Kallmünzer B, Breuer L, Kahl N, Bobinger T, Raaz-Schrauder D, Huttner HB, et al. Serious cardiac arrhythmias after stroke: incidence, time course, and predictors—a systematic, prospective analysis. Stroke 2012, 43: 2892–2897.Google Scholar
  54. 54.
    Dimant J, Grob D. Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke 1977, 8: 448–455.Google Scholar
  55. 55.
    Hachinski VC, Smith KE, Silver MD, Gibson CJ, Ciriello J. Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke 1986, 17: 387–390.Google Scholar
  56. 56.
    Kilbourn KJ, Ching G, Silverman DI, McCullough L, Brown RJ. Clinical outcomes after neurogenic stress induced cardiomyopathy in aneurysmal sub-arachnoid hemorrhage: a prospective cohort study. Clin Neurol Neurosurg 2015, 128: 4–9.Google Scholar
  57. 57.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49: e46–e110.Google Scholar
  58. 58.
    Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death—executive summary. J Am Coll Cardiol 2006, 48: 1088–1132.Google Scholar
  59. 59.
    van den Bergh WM, Algra A, van der Sprenkel JWB, Tulleken CAF, Rinkel GJE. Hypomagnesemia after aneurysmal subarachnoid hemorrhage. Neurosurgery 2003, 52: 276–281.Google Scholar
  60. 60.
    van den Bergh WM, Algra A, Rinkel GJE. Electrocardiographic abnormalities and serum magnesium in patients with subarachnoid hemorrhage. Stroke 2004, 35: 644–648.Google Scholar
  61. 61.
    Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke 2003, 34: 705–712.Google Scholar
  62. 62.
    Robinson TG, Potter JF. Postprandial and orthostatic cardiovascular changes after acute stroke. Stroke 1995, 26: 1811–1816.Google Scholar
  63. 63.
    Orlandi G, Fanucchi S, Strata G, Pataleo L, Pellegrini LL, Prontera C, et al. Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand 2000, 102: 317–321.Google Scholar
  64. 64.
    Sykora M, Diedler J, Rupp A, Turcani P, Rocco A, Steiner T. Impaired baroreflex sensitivity predicts outcome of acute intracerebral hemorrhage. Crit Care Med 2008, 36: 3074–3079.Google Scholar
  65. 65.
    Faust K, Horn P, Schneider UC, Vajkoczy P. Blood pressure changes after aneurysmal subarachnoid hemorrhage and their relationship to cerebral vasospasm and clinical outcome. Clin Neurol Neurosurg 2014, 125: 36–40.Google Scholar
  66. 66.
    Sykora M, Diedler J, Poli S, Rupp A, Turcani P, Steiner T. Blood pressure course in acute stroke relates to baroreflex dysfunction. Cerebrovasc Dis 2010, 30: 172–179.Google Scholar
  67. 67.
    Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, et al. The novel β-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab 2000, 20: 1197–1204.Google Scholar
  68. 68.
    Elghozi JL, Julien C. Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam Clin Pharmacol 2007, 21: 337–347.Google Scholar
  69. 69.
    Laowattana S, Oppenheimer SM. Protective effects of beta-blockers in cerebrovascular disease. Neurology 2007, 68: 509–514.Google Scholar
  70. 70.
    Kim BS, Kim YI, Lee KS. Contralateral hyperhidrosis after cerebral infarction: clinicoanatomic correlations in five cases. Stroke 1995, 26: 896–899.Google Scholar
  71. 71.
    Korpelainen JT, Sotaniemi KA, Myllylä VV. Hyperhidrosis as a reflection of autonomic failure in patients with acute hemispheral brain infarction. Stroke 1992, 23: 1271–1275.Google Scholar
  72. 72.
    Labar DR, Mohr JP, Nichols FT, Tatemichi TK. Unilateral hyperhidrosis after cerebral infarction. Neurology 1988, 38: 1679–1682.Google Scholar
  73. 73.
    Korpelainen JT, Sotaniemi KA, Myllylä VV. Asymmetrical skin temperature in ischemic stroke. Stroke 1995, 26: 1543–1547.Google Scholar
  74. 74.
    Wanklyn P, Forster A, Young J, Mulley G. Prevalence and associated features of the cold hemiplegic arm. Stroke 1995, 26: 1867–1870.Google Scholar
  75. 75.
    Wanklyn P, Ilsley DW, Greenstein D, Hampton IF, Roper TA, Kester RC et al. The cold hemiplegic arm. Stroke 1994, 25: 1765–1770.Google Scholar
  76. 76.
    Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy 2004, 105: 108–116.Google Scholar
  77. 77.
    Korpelainen JT, Tolonen U, Sotaniemi KA, Myllylä VV. Suppressed sympathetic skin response in brain infarction. Stroke 1993, 24: 1389–1392.Google Scholar
  78. 78.
    Linden D, Berlit P. Sympathetic skin responses (SSRs) in monofocal brain lesions: topographical aspects of central sympathetic pathways. Acta Neurol Scand 1995, 91: 372–376.Google Scholar
  79. 79.
    Ullman T, Reding M. Gastrointestinal dysfunction in stroke. Semin Neurol 1996, 16: 269–375.Google Scholar
  80. 80.
    Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 2005, 36: 2756–2763.Google Scholar
  81. 81.
    Johnson ER, McKenzie SW, Sievers AE. Dysphagia following stroke: quantitative evaluation of pharyngeal transit times. Arch Phys Med Rehabil 1992, 73: 419–423.Google Scholar
  82. 82.
    Ogata T, Kamouchi M, Matsuo R, Hata J, Kuroda J, Ago T, et al. Gastrointestinal bleeding in acute ischemic stroke: recent trends from the fukuoka stroke registry. Cerebrovasc Dis Extra 2014, 4: 156–164.Google Scholar
  83. 83.
    Davenport RJ, Dennis MS, Warlow CP. Gastrointestinal hemorrhage after acute stroke. Stroke 1996, 27: 421–424.Google Scholar
  84. 84.
    Camara-Lemarroy CR, Ibarra-Yruegas BE, Gongora-Rivera F. Gastrointestinal complications after ischemic stroke. J Neurol Sci 2014, 346: 20–25.Google Scholar
  85. 85.
    Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand 2009, 119: 155–161.Google Scholar
  86. 86.
    Kumar S, Wagner CW, Frayne C, Zhu L, Selim M, Feng W, et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke 2011, 42: 1035–1040.Google Scholar
  87. 87.
    Yang EJ, Baek SR, Shin J, Lim JY, Jang HJ, Kim YK, et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci 2012, 30: 303–311.Google Scholar
  88. 88.
    Shinohara Y, Yanagihara T, Abe K, Yoshimine T, Fujinaka T, Chuma T, et al. Stroke in general. J Stroke Cerebrovasc Dis 2011, 20: S7–S30.Google Scholar
  89. 89.
    Malloy RJ, Kanaan AO, Silva MA, Donovan JL. Evaluation of antiplatelet agents for secondary prevention of stroke using mixed treatment comparison meta-analysis. Clin Ther 2013, 35: 1490–1500.Google Scholar
  90. 90.
    Mehdi Z, Birns J, Bhalla A. Post-stroke urinary incontinence. Int J Clin Pract 2013, 67: 1128–1137.Google Scholar
  91. 91.
    Brittain KR, Peet SM, Castleden CM. Stroke and incontinence. Stroke 1998, 29: 524–528.Google Scholar
  92. 92.
    Kolominsky-Rabas PL, Hilz M-J, Neundoerfer B, Heuschmann PU. Impact of urinary incontinence after stroke: results from a prospective population-based stroke register. Neurourol Urodyn 2003, 22: 322–327.Google Scholar
  93. 93.
    Wilson D, Lowe D, Hoffman A, Rudd A, Wagg A. Urinary incontinence in stroke: results from the UK National Sentinel Audits of Stroke 1998–2004. Age Ageing 2008, 37: 542–546.Google Scholar
  94. 94.
    Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci 2008, 9: 453–466.Google Scholar
  95. 95.
    Korpelainen JT, Kauhanen ML, Kemola H, Malinen U, Myllylä VV. Sexual dysfunction in stroke patients. Acta Neurol Scand 1998, 98: 400–405.Google Scholar
  96. 96.
    Jung JH, Kam SC, Choi SM, Jae SU, Lee SH, Hyun JS. Sexual dysfunction in male stroke patients: correlation between brain lesions and sexual function. Urology 2008, 71: 99–103.Google Scholar
  97. 97.
    Dean RC, Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am 2005, 32: 379–395.Google Scholar
  98. 98.
    Badiger S, Akkasaligar PT, Narone U. Hyperglycemia and stroke. Int J Stroke 2013, 1: 1–6.Google Scholar
  99. 99.
    Christensen H, Boysen G. Blood glucose increases early after stroke onset: a study on serial measurements of blood glucose in acute stroke. Eur J Neurol 2002, 9: 297–301.Google Scholar
  100. 100.
    Järhult J, Falck B, Ingemansson S, Nobin A. The functional importance of sympathetic nerves to the liver and endocrine pancreas. Ann Surg 1979, 189: 96–100.Google Scholar
  101. 101.
    Wang YY, Lin SY, Chuang YH, Sheu WHH, Tung KC, Chen CJ. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 2014, 155: 1235–1246.Google Scholar
  102. 102.
    Sarkar RN, Banerjee S, Basu A. Comparative evaluation of diabetic and non-diabetic stroke–effect of glycaemia on outcome. J Indian Med Assoc 2004, 102: 551–553.Google Scholar
  103. 103.
    Szczudlik A, Slowik A, Turaj W, Wyrwicz-Petkow U, Pera J, Dziedzic T, et al. Transient hyperglycemia in ischemic stroke patients. J Neurol Sci 2001, 189: 105–111.Google Scholar
  104. 104.
    Demchuk AM, Morgenstern LB, Krieger DW, Chi TL, Hu W, Wein TH, et al. Serum glucose level and diabetes predict tissue plasminogen activator–related intracerebral hemorrhage in acute ischemic stroke. Stroke 1999, 30: 34–39.Google Scholar
  105. 105.
    Radermecker RP, Scheen AJ. Management of blood glucose in patients with stroke. Diabetes Metab 2010, 36: S94–S99.Google Scholar
  106. 106.
    Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl Stroke Res 2017, 8: 33–46.Google Scholar
  107. 107.
    Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab 2011, 31: 1187–1195.Google Scholar
  108. 108.
    Egawa N, Lok J, Washida K, Arai K. Mechanisms of axonal damage and repair after central nervous system injury. Transl Stroke Res 2017, 8: 14–21.Google Scholar
  109. 109.
    Ay I, Sorensen AG, Ay H. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: An unlikely role for cerebral blood flow. Brain Res 2011, 1392: 110–115.Google Scholar
  110. 110.
    Miyamoto O, Pang J, Sumitani K, Negi T, Hayashida Y, Itano T. Mechanisms of the anti-ischemic effect of vagus nerve stimulation in the gerbil hippocampus. Neuroreport 2003, 14: 1971–1974.Google Scholar
  111. 111.
    Shimamura N, Katagai T, Kakuta K, Matsuda N, Katayama K, Fujiwara N, et al. Rehabilitation and the neural network after stroke. Transl Stroke Res 2017, 8: 507–514.Google Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Neurosurgery, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
  2. 2.Department of Physiology and PharmacologyLoma Linda UniversityLoma LindaUSA
  3. 3.Department of NeurosurgeryLoma Linda UniversityLoma LindaUSA
  4. 4.Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  5. 5.Brain Research InstituteZhejiang UniversityHangzhouChina
  6. 6.Collaborative Innovation Center for Brain ScienceZhejiang UniversityHangzhouChina
  7. 7.Department of AnesthesiologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations