Advertisement

Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits

  • Qiye He
  • Jihua Wang
  • Hailan Hu
Review
  • 169 Downloads

Abstract

Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.

Keywords

Immediate-early gene Emotion Activity-dependent tools Neural ensembles c-fos Arc 

Notes

Acknowledgements

This review was supported by the National Natural Science Foundation of China (81571335, 91432108 and 81527901) and grants from the Ministry of Science and Technology of China (2016YFA0501000).

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Anderson DJ, Adolphs R. A framework for studying emotions across species. Cell 2014, 157: 187–200.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hu H. Reward and aversion. Annu Rev Neurosci 2016, 39: 297–324.PubMedCrossRefGoogle Scholar
  3. 3.
    Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989, 340: 474–476.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP, Sheng M, Lau LF, Greenberg ME. Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev 1989, 3: 304–313.PubMedCrossRefGoogle Scholar
  5. 5.
    Morgan JI, Cohen DR, Hempstead JL, Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987, 237: 192–197.PubMedCrossRefGoogle Scholar
  6. 6.
    Moratalla R, Robertson HA, Graybiel AM. Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 1992, 12: 2609–2622.PubMedCrossRefGoogle Scholar
  7. 7.
    Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci U S A 1992, 89: 5764–5768.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson ZV, Revis AA, Burdick MA, Rhodes JS. A similar pattern of neuronal Fos activation in 10 brain regions following exposure to reward- or aversion-associated contextual cues in mice. Physiol Behav 2010, 99: 412–418.PubMedCrossRefGoogle Scholar
  9. 9.
    Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012, 491: 212–217.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 2016, 165: 1776–1788.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 2016, 90: 348–361.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, et al. A circuit mechanism for differentiating positive and negative associations. Nature 2015, 520: 675–678.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci 2016, 19: 1636–1646.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Guzowski JF, Setlow B, Wagner EK, McGaugh JL. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 2001, 21: 5089–5098.PubMedCrossRefGoogle Scholar
  15. 15.
    Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr Protoc Neurosci 2001, 15: 1–8.CrossRefGoogle Scholar
  16. 16.
    Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470: 221–226.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chaudhuri A, Nissanov J, Larocque S, Rioux L. Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mRNA and protein expression. Proc Natl Acad Sci U S A 1997, 94: 2671–2675.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zangenehpour S, Chaudhuri A. Neural activity profiles of the neocortex and superior colliculus after bimodal sensory stimulation. Cereb Cortex 2001, 11: 924–935.PubMedCrossRefGoogle Scholar
  19. 19.
    Xiu J, Zhang Q, Zhou T, Zhou TT, Chen Y, Hu H. Visualizing an emotional valence map in the limbic forebrain by TAI–FISH. Nat Neurosci 2014, 17: 1552–1559.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Q, He Q, Wang J, Fu C, Hu H. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc 2018, 13: 118–133.PubMedCrossRefGoogle Scholar
  21. 21.
    Becker K, Jahrling N, Saghafi S, Weiler R, Dodt HU. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 2012, 7: e33916.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 2011, 14: 1481–1488.PubMedCrossRefGoogle Scholar
  23. 23.
    Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012, 7: 1983–1995.PubMedCrossRefGoogle Scholar
  24. 24.
    Erturk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker K, et al. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 2011, 18: 166–171.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 2013, 140: 1364–1368.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013, 16: 1154–1161.PubMedCrossRefGoogle Scholar
  27. 27.
    Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 2014, 9: 1682–1697.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497: 332–337.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014, 157: 726–739.PubMedCrossRefGoogle Scholar
  30. 30.
    Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014, 159: 896–910.PubMedCrossRefGoogle Scholar
  31. 31.
    Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 2016, 165: 1789–1802.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014, 158: 945–958.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis 2006, 23: 3139–3149.PubMedCrossRefGoogle Scholar
  34. 34.
    Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 2010, 330: 1404–1408.PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng T, Yang Z, Li A, Lv X, Zhou Z, Wang X, et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt Express 2013, 21: 9839–9850.PubMedCrossRefGoogle Scholar
  36. 36.
    Gong H, Zeng S, Yan C, Lv X, Yang Z, Xu T, et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage 2013, 74: 87–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Xiong H, Zhou Z, Zhu M, Lv X, Li A, Li S, et al. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat Commun 2014, 5: 3992.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gore F, Schwartz EC, Salzman CD. Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philos Trans R Soc Lond B Biol Sci 2015, 370: 20140216.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neurosci 1995, 15: 4238–4249.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilson Y, Nag N, Davern P, Oldfield BJ, McKinley MJ, Greferath U, et al. Visualization of functionally activated circuitry in the brain. Proc Natl Acad Sci U S A 2002, 99: 3252–3257.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Barth AL, Gerkin RC, Dean KL. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci 2004, 24: 6466–6475.PubMedCrossRefGoogle Scholar
  42. 42.
    Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, et al. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 2012, 109: 17093–17098.PubMedCrossRefGoogle Scholar
  43. 43.
    Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 2013, 78: 1024–1035.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 2006, 126: 389–402.CrossRefGoogle Scholar
  45. 45.
    Kim Y, Perova Z, Mirrione MM, Pradhan K, Henn FA, Shea S, et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front Neural Circuits 2016, 10: 3.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Koya E, Golden SA, Harvey BK, Guez-Barber DH, Berkow A, Simmons DE, et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 2009, 12: 1069–1073.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Boer U, Alejel T, Beimesche S, Cierny I, Krause D, Knepel W, et al. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2007, 2: e431.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Geusz ME, Fletcher C, Block GD, Straume M, Copeland NG, Jenkins NA, et al. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr Biol 1997, 7: 758–766.PubMedCrossRefGoogle Scholar
  49. 49.
    Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 2009, 5: 118–126.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 2013, 10: 889–895.PubMedCrossRefGoogle Scholar
  51. 51.
    Eguchi M, Yamaguchi S. In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain. Neuroimage 2009, 44: 1274–1283.PubMedCrossRefGoogle Scholar
  52. 52.
    Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, et al. Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci U S A 2009, 106: 316–321.PubMedCrossRefGoogle Scholar
  53. 53.
    Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science 2016, 353: 1536–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cruz FC, Babin KR, Leao RM, Goldart EM, Bossert JM, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci 2014, 34: 7437–7446.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci 2011, 14: 420–422.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Xue YX, Chen YY, Zhang LB, Zhang LQ, Huang GD, Sun SC, et al. Selective inhibition of amygdala neuronal ensembles encoding nicotine-associated memories inhibits nicotine preference and relapse. Biol Psychiatry 2017, 82: 781–793. .PubMedCrossRefGoogle Scholar
  57. 57.
    Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, et al. Distinct Fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories. J Neurosci 2016, 36: 6691–6703.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263-1268.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 2006, 3: 785–792.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 2008, 36: 141–154.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011, 5: 18.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 2014, 513: 426–430.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL, et al. Activating positive memory engrams suppresses depression–like behaviour. Nature 2015, 522: 335–339.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012, 484: 381–385.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, et al. Creating a false memory in the hippocampus. Science 2013, 341: 387–391.PubMedCrossRefGoogle Scholar
  66. 66.
    Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 2015, 162: 134–145.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Root CM, Denny CA, Hen R, Axel R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature 2014, 515: 269–273.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dong S, Rogan SC, Roth BL. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 2010, 5: 561–573.PubMedCrossRefGoogle Scholar
  70. 70.
    Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, et al. Generation of a synthetic memory trace. Science 2012, 335: 1513–1516.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Man PS, Wells T, Carter DA. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expr Patterns 2007, 7: 872–883.PubMedCrossRefGoogle Scholar
  72. 72.
    Xie H, Liu Y, Zhu Y, Ding X, Yang Y, Guan JS. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc Natl Acad Sci U S A 2014, 111: 2788–2793.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525: 333–338.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sorensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, et al. A robust activity marking system for exploring active neuronal ensembles. Elife 2016, 5: e13918.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 2008, 319: 1104–1107.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science 2007, 317: 1230–1233.PubMedCrossRefGoogle Scholar
  77. 77.
    Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, et al. Engrams and circuits crucial for systems consolidation of a memory. Science 2017, 356: 73–78.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992, 89: 5547–5551.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P. Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 1996, 93: 10887–10890.PubMedCrossRefGoogle Scholar
  80. 80.
    Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 1995, 92: 6991–6995.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997, 237: 752–757.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459: 698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012, 15: 793–802.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010, 13: 133–140.PubMedCrossRefGoogle Scholar
  85. 85.
    Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 2013, 78: 773–784.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 2017, 357: 1149–1155.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 2014, 83: 189–201.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 2016, 92: 739–753.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135: 738–748.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li K, Nakajima M, Ibanez-Tallon I, Heintz N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 2016, 167: 60–72 e11.Google Scholar
  91. 91.
    Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E, Stern AL, et al. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J Neurosci 2011, 31: 4251–4259.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 2012, 151: 1126–1137.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat Biotechnol 2017.Google Scholar
  94. 94.
    Wang W, Wildes CP, Pattarabanjird T, Sanchez MI, Glober GF, Matthews GA, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol 2017, 35: 864–871.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch. Science 2003, 301: 1541–1544.PubMedCrossRefGoogle Scholar
  96. 96.
    Barnea G, Strapps W, Herrada G, Berman Y, Ong J, Kloss B, et al. The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A 2008, 105: 64–69.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Glazewski S, Bejar R, Mayford M, Fox K. The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex. Neuropharmacology 2001, 41: 771–778.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dragunow M, Faull R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 1989, 29: 261–265.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 1993, 13: 744–751.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 1998, 33: 287–297.PubMedCrossRefGoogle Scholar
  101. 101.
    Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 1996, 16: 4529–4535.PubMedCrossRefGoogle Scholar
  102. 102.
    Bhat RV, Baraban JM. High basal expression of Zif268 in cortex is dependent on intact noradrenergic system. Eur J Pharmacol 1992, 227: 447–448.PubMedCrossRefGoogle Scholar
  103. 103.
    Freed PJ, Yanagihara TK, Hirsch J, Mann JJ. Neural mechanisms of grief regulation. Biol Psychiatry 2009, 66: 33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Belova MA, Paton JJ, Salzman CD. Moment-to-moment tracking of state value in the amygdala. J Neurosci 2008, 28: 10023–10030.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 2009, 459: 837–841.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhouChina
  2. 2.Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina

Personalised recommendations