Advertisement

Neuroscience Bulletin

, Volume 35, Issue 1, pp 145–155 | Cite as

Cell-Type Identification in the Autonomic Nervous System

  • Di-Shi Liu
  • Tian-Le XuEmail author
Review

Abstract

The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved. One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.

Keywords

Autonomic nervous system Neuronal tracing Genetic marker Molecular profiling Cell-type diversity 

Notes

Acknowledgements

We thank Dr. Michael Xi Zhu for critical reading of the manuscript. This review was supported by the National Natural Science Foundation of China (91632304 and 31500671).

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Maria A. Patestas LPG. A Textbook of Neuroanatomy, 2nd Edition. John Wiley & Sons, Inc, 2016.Google Scholar
  2. 2.
    Waxman SG. Clinical Neuroanatomy, 27th Edition. McGraw-Hill Education, 2013.Google Scholar
  3. 3.
    Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, et al. Neuroscience, 2nd Edition. Sinauer Associates, Inc., 2001.Google Scholar
  4. 4.
    Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2017, 152: 131–148.CrossRefGoogle Scholar
  5. 5.
    Ratner N, Brodeur GM, Dale RC, Schor NF. The “neuro” of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016, 80: 13–23.CrossRefGoogle Scholar
  6. 6.
    Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers 2016, 2: 16078.CrossRefGoogle Scholar
  7. 7.
    Gibbins I. Functional organization of autonomic neural pathways. Organogenesis 2013, 9: 169–175.CrossRefGoogle Scholar
  8. 8.
    Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th Edition. Molecular Probes Educational Resources, 2010: 600–648.Google Scholar
  9. 9.
    Dusenkova S, Ru F, Surdenikova L, Nassenstein C, Hatok J, Dusenka R, et al. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am J Physiol Gastrointest Liver Physiol 2014, 307: G922–930.CrossRefGoogle Scholar
  10. 10.
    Li AL, Zhang JD, Xie W, Strong JA, Zhang JM. Inflammatory changes in paravertebral sympathetic ganglia in two rat pain models. Neurosci Bull 2018, 34: 85–97.CrossRefGoogle Scholar
  11. 11.
    Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 2017, 541: 176–181.CrossRefGoogle Scholar
  12. 12.
    Gibbins IL. Vasomotor, pilomotor and secretomotor neurons distinguished by size and neuropeptide content in superior cervical ganglia of mice. J Auton Nerv Syst 1991, 34: 171–183.CrossRefGoogle Scholar
  13. 13.
    Furlan A, La Manno G, Lubke M, Haring M, Abdo H, Hochgerner H, et al. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat Neurosci 2016, 19: 1331–1340.CrossRefGoogle Scholar
  14. 14.
    Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, et al. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 2010, 588: 4769–4783.CrossRefGoogle Scholar
  15. 15.
    Zele T, Sketelj J, Bajrovic FF. Efficacy of fluorescent tracers in retrograde labeling of cutaneous afferent neurons in the rat. J Neurosci Methods 2010, 191: 208–214.CrossRefGoogle Scholar
  16. 16.
    Ekstrand MI, Enquist LW, Pomeranz LE. The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 2008, 14: 134–140.CrossRefGoogle Scholar
  17. 17.
    Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 1989, 491: 156–162.CrossRefGoogle Scholar
  18. 18.
    Standish A, Enquist LW, Schwaber JS. Innervation of the heart and its central medullary origin defined by viral tracing. Science 1994, 263: 232–234.CrossRefGoogle Scholar
  19. 19.
    Stanley S, Pinto S, Segal J, Perez CA, Viale A, DeFalco J, et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci U S A 2010, 107: 7024–7029.CrossRefGoogle Scholar
  20. 20.
    Norgren RB, Jr., Lehman MN. Herpes simplex virus as a transneuronal tracer. Neurosci Biobehav Rev 1998, 22: 695–708.CrossRefGoogle Scholar
  21. 21.
    Lo L, Anderson DJ. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 2011, 72: 938–950.CrossRefGoogle Scholar
  22. 22.
    Kretzschmar K, Watt FM. Lineage tracing. Cell 2012, 148: 33–45.CrossRefGoogle Scholar
  23. 23.
    Marmigere F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007, 8: 114–127.CrossRefGoogle Scholar
  24. 24.
    Pansky B. Review of Medical Embryology. Macmillan USA, 1982.Google Scholar
  25. 25.
    Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 2012, 72: 1068–1084.CrossRefGoogle Scholar
  26. 26.
    Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996, 122: 2079–2088.Google Scholar
  27. 27.
    Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 1999, 24: 861–870.CrossRefGoogle Scholar
  28. 28.
    Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001, 94: 1–13.CrossRefGoogle Scholar
  29. 29.
    Whalley K. Neural development: finding the source of parasympathetic neurons. Nat Rev Neurosci 2014, 15: 494.CrossRefGoogle Scholar
  30. 30.
    Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, et al. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 2014, 345: 82–87.CrossRefGoogle Scholar
  31. 31.
    Espinosa-Medina I, Outin E, Picard CA, Chettouh Z, Dymecki S, Consalez GG, et al. Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 2014, 345: 87–90.CrossRefGoogle Scholar
  32. 32.
    Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 2011, 121: 2413–2421.CrossRefGoogle Scholar
  33. 33.
    Carr MJ, Undem BJ. Bronchopulmonary afferent nerves. Respirology 2003, 8: 291–301.CrossRefGoogle Scholar
  34. 34.
    Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2011, 165: 10–27.CrossRefGoogle Scholar
  35. 35.
    Furlan A, Lubke M, Adameyko I, Lallemend F, Ernfors P. The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013, 32: 1613–1625.CrossRefGoogle Scholar
  36. 36.
    Tsarovina K, Reiff T, Stubbusch J, Kurek D, Grosveld FG, Parlato R, et al. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 2010, 30: 10833–10843.CrossRefGoogle Scholar
  37. 37.
    Korsch E, Steinkuhle J, Massin M, Lyonnet S, Touraine RL. Impaired autonomic control of the heart by SOX10 mutation. Eur J Pediatr 2001, 160: 68–69.CrossRefGoogle Scholar
  38. 38.
    Kalcheim C, Rohrer H. Neuroscience. Following the same nerve track toward different cell fates. Science 2014, 345: 32–33.CrossRefGoogle Scholar
  39. 39.
    Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, et al. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 2009, 29: 5806–5819.CrossRefGoogle Scholar
  40. 40.
    Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing. Cell 2015, 161: 622–633.CrossRefGoogle Scholar
  41. 41.
    Rang HP DM, Ritter JM, Moore PK. Pharmacology 5th Edition. Churchill Livingstone, 2003.Google Scholar
  42. 42.
    Elfvin LG, Lindh B, Hokfelt T. The chemical neuroanatomy of sympathetic ganglia. Annu Rev Neurosci 1993, 16: 471–507.CrossRefGoogle Scholar
  43. 43.
    Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 1964, 239: 2910–2917.Google Scholar
  44. 44.
    Rush RA, Geffen LB. Dopamine beta-hydroxylase in health and disease. Crit Rev Clin Lab Sci 1980, 12: 241–277.CrossRefGoogle Scholar
  45. 45.
    Costanzo LS. Physiology. Lippincott Williams & Wilkins, 2007: 37.Google Scholar
  46. 46.
    Purves D FD, Hall WC, LaMantia AS, White LE. Neuroscience 5th Edition. Sinauer Associates, 2012.Google Scholar
  47. 47.
    Zimmerman CA, Lin YC, Leib DE, Guo L, Huey EL, Daly GE, et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 2016, 537: 680–684.CrossRefGoogle Scholar
  48. 48.
    Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, Yu Y, et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 2015, 521: 180–185.CrossRefGoogle Scholar
  49. 49.
    Marston OJ, Hurst P, Evans ML, Burdakov DI, Heisler LK. Neuropeptide Y cells represent a distinct glucose-sensing population in the lateral hypothalamus. Endocrinology 2011, 152: 4046–4052.CrossRefGoogle Scholar
  50. 50.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 2016, 166: 209–221.CrossRefGoogle Scholar
  51. 51.
    Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 2014, 111: 11515–11520.CrossRefGoogle Scholar
  52. 52.
    Berglund ED, Liu T, Kong X, Sohn JW, Vong L, Deng Z, et al. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat Neurosci 2014, 17: 911–913.CrossRefGoogle Scholar
  53. 53.
    Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000, 106: 271–279.CrossRefGoogle Scholar
  54. 54.
    Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 2011, 13: 195–204.CrossRefGoogle Scholar
  55. 55.
    Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB, et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 2013, 152: 612–619.CrossRefGoogle Scholar
  56. 56.
    Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007, 356: 237–247.CrossRefGoogle Scholar
  57. 57.
    Le Tissier P, Campos P, Lafont C, Romano N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 2017, 13: 257–267.CrossRefGoogle Scholar
  58. 58.
    Ryan PJ, Ross SI, Campos CA, Derkach VA, Palmiter RD. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat Neurosci 2017, 20: 1722–1733.CrossRefGoogle Scholar
  59. 59.
    Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, et al. Warm-sensitive neurons that control body temperature. Cell 2016, 167: 47–59 e15.Google Scholar
  60. 60.
    Song K, Wang H, Kamm GB, Pohle J, Reis FC, Heppenstall P, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 2016, 353: 1393–1398.CrossRefGoogle Scholar
  61. 61.
    Tan CH, McNaughton PA. The TRPM2 ion channel is required for sensitivity to warmth. Nature 2016, 536: 460–463.CrossRefGoogle Scholar
  62. 62.
    Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 2009, 137: 2084–2095 e2083.Google Scholar
  63. 63.
    Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 2008, 134: 2059–2069.CrossRefGoogle Scholar
  64. 64.
    Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res 2007, 101: 1009–1019.CrossRefGoogle Scholar
  65. 65.
    Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, et al. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 2009, 64: 885–897.CrossRefGoogle Scholar
  66. 66.
    Tan ZY, Lu Y, Whiteis CA, Simms AE, Paton JF, Chapleau MW, et al. Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circ Res 2010, 106: 536–545.CrossRefGoogle Scholar
  67. 67.
    Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, et al. The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 2004, 127: 1739–1747.CrossRefGoogle Scholar
  68. 68.
    Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 2005, 54: 1408–1415.CrossRefGoogle Scholar
  69. 69.
    Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 2011, 519: 3085–3101.CrossRefGoogle Scholar
  70. 70.
    Udit S, Burton M, Rutkowski JM, Lee S, Bookout AL, Scherer PE, et al. Nav1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol Metab 2017, 6: 1081–1091.Google Scholar
  71. 71.
    Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 2004, 5: 263–278.CrossRefGoogle Scholar
  72. 72.
    Woodcock EA, Du XJ, Reichelt ME, Graham RM. Cardiac alpha 1-adrenergic drive in pathological remodelling. Cardiovasc Res 2008, 77: 452–462.CrossRefGoogle Scholar
  73. 73.
    Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature 2006, 442: 645–650.CrossRefGoogle Scholar
  74. 74.
    Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci U S A 2009, 106: 9842–9847.CrossRefGoogle Scholar
  75. 75.
    Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999, 21: 70–71.CrossRefGoogle Scholar
  76. 76.
    Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development 2000, 127: 1607–1616.Google Scholar
  77. 77.
    Fiering SN, Roederer M, Nolan GP, Micklem DR, Parks DR, Herzenberg LA. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 1991, 12: 291–301.CrossRefGoogle Scholar
  78. 78.
    Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol 2010, 316: 120–128.CrossRefGoogle Scholar
  79. 79.
    Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014, 37: 387–407.CrossRefGoogle Scholar
  80. 80.
    Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018, 15: 21–38.CrossRefGoogle Scholar
  81. 81.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.CrossRefGoogle Scholar
  82. 82.
    Roth BL. DREADDs for neuroscientists. Neuron 2016, 89: 683–694.CrossRefGoogle Scholar
  83. 83.
    Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017, 357: 503–507.CrossRefGoogle Scholar
  84. 84.
    Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015, 18: 145–153.CrossRefGoogle Scholar
  85. 85.
    Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL, Wysocki RW, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 2012, 151: 1126–1137.CrossRefGoogle Scholar
  86. 86.
    Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A 2009, 106: 13939–13944.CrossRefGoogle Scholar
  87. 87.
    Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008, 135: 738–748.CrossRefGoogle Scholar
  88. 88.
    Stanley S, Domingos AI, Kelly L, Garfield A, Damanpour S, Heisler L, et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab 2013, 18: 596–607.CrossRefGoogle Scholar
  89. 89.
    Allison MB, Patterson CM, Krashes MJ, Lowell BB, Myers MG, Jr., Olson DP. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol Metab 2015, 4: 299–309.CrossRefGoogle Scholar
  90. 90.
    Li Z, Kelly L, Heiman M, Greengard P, Friedman JM. Hypothalamic Amylin acts in concert with leptin to regulate food intake. Cell Metab 2015, 22: 1059–1067.CrossRefGoogle Scholar
  91. 91.
    Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008, 135: 749–762.CrossRefGoogle Scholar
  92. 92.
    Nectow AR, Moya MV, Ekstrand MI, Mousa A, McGuire KL, Sferrazza CE, et al. Rapid molecular profiling of defined cell types using viral TRAP. Cell Rep 2017, 19: 655–667.CrossRefGoogle Scholar
  93. 93.
    Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 2006, 3: 887–889.CrossRefGoogle Scholar
  94. 94.
    Nectow AR, Ekstrand MI, Friedman JM. Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP. Nat Protoc 2015, 10: 1319–1327.CrossRefGoogle Scholar
  95. 95.
    Ekstrand MI, Nectow AR, Knight ZA, Latcha KN, Pomeranz LE, Friedman JM. Molecular profiling of neurons based on connectivity. Cell 2014, 157: 1230–1242.CrossRefGoogle Scholar
  96. 96.
    Li C, Wang S, Chen Y, Zhang X. Somatosensory neuron typing with high-coverage single-cell RNA sequencing and functional analysis. Neurosci Bull 2018, 34: 200–207.CrossRefGoogle Scholar
  97. 97.
    McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 2016, 353: aaf7907.Google Scholar
  98. 98.
    Sun S, Xu Q, Guo C, Guan Y, Liu Q, Dong X. Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord. Neuron 2017, 93: 840–853.CrossRefGoogle Scholar
  99. 99.
    Gautron L, Lazarus M, Scott MM, Saper CB, Elmquist JK. Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J Comp Neurol 2010, 518: 2090–2108.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations