Neuroscience Bulletin

, Volume 34, Issue 5, pp 769–778 | Cite as

GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice

  • Zhibao Guo
  • Yingying Su
  • Huifang Lou
Original Article


Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP+) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP+ cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP+ cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP+ cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP+ cells mainly generated NeuN+ neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP+ cells at the young adult stage is significantly different from that at the adult stage.


GFAP Cell fate Neural stem cells Neurons Astrocytes 



This study was supported by the National Youth Fund of China (81400931) and a Public Support Project of the Science and Technology Department of Zhejiang Province (2013C37001). We are thankful to Professor Shumin Duan (Zhejiang University School of Medicine, Hangzhou, China) for providing hGFAP-Cre transgenic mice.

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.


  1. 1.
    Malatesta P, Harfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000, 127: 5253–5263.PubMedGoogle Scholar
  2. 2.
    Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchnoff F, et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 2003, 37: 751–776.CrossRefPubMedGoogle Scholar
  3. 3.
    Anthony TE, Klein C, Fishell G, Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 2004, 41: 881–890.CrossRefPubMedGoogle Scholar
  4. 4.
    Casper KB, McCarthy KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 2006, 31: 676–684.CrossRefPubMedGoogle Scholar
  5. 5.
    Misson JP, Edwards MA, Yamamoto M, Caviness Jr VS. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res 1988, 44: 95–108.CrossRefPubMedGoogle Scholar
  6. 6.
    Kriegstein AR, Gotz M. Radial glia diversity: a matter of cell fate. Glia 2003, 43: 37–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 1972, 145: 61–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, et al. Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 2013, 47: 833–844.CrossRefPubMedGoogle Scholar
  9. 9.
    Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 2012, 337: 746–749.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guo Z, Wang X, Xiao J, Wang Y, Lu H, Teng J, et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice. Brain Res 2013, 532: 14–20.CrossRefGoogle Scholar
  11. 11.
    Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, et al. Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 2006, 26: 8609–8621.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang T, Tanida M, Uchida K, Suzuki Y, Yang W, Kuda Y, et al. Mouse anaphylactic hypotension is characterized by initial baroreflex independent renal sympathoinhibition followed by sustained renal sympathoexcitation. Front Physiol 2017, 8: 669.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guo F, Ma J, McCauley E, Bannerman P, Pleasure D. Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo. J Neurosci 2009, 29: 7256–7270.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2007, 2: 26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001, 31: 85–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Wen J, Yang HB, Zhou B, Lou HF, Duan S. β-Catenin is critical for cerebellar foliation and lamination. PLoS One 2013, 8: e64451.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K,Wade A, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 2008, 11: 1392–1401.CrossRefPubMedGoogle Scholar
  18. 18.
    Robins SC, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, et al. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS One 2013, 8: e78236.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 2002, 22: 5100–5113.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013, 14: 311–321.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Namihira M, Nakashima K. Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol. 2013, 23: 921–927.CrossRefPubMedGoogle Scholar
  22. 22.
    Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 2012, 484: 376–380.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH. Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 2014, 7: a020362.CrossRefPubMedGoogle Scholar
  24. 24.
    Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast 2013, 2013: 85463.CrossRefGoogle Scholar
  25. 25.
    Guérout N, Li X, Barnabé-Heider F. Cell fate control in the developing central nervous system. Exp Cell Res 2014, 321: 77–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Cameron RS, Rakic P. Glial cell lineage in the cerebral cortex: a review and synthesis. Glia 1991, 4: 124–137.CrossRefPubMedGoogle Scholar
  27. 27.
    Marshall CA, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they where did they come from and where are they going? Glia 2003, 43: 52–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009, 32: 149–184.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li G, Fang L, Fernández G, Pleasure SJ. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 2013, 78: 658–672.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhu X, Hill RA, Nishiyama A. NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord. Neuron Glia Biol 2008, 4: 19–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A. Age-dependent fate and lineage restriction of single NG2 cells. Development 2011, 138: 745–753.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang W, Zhao N, Bai X, Karram K, Trotter J, Goebbels S, et al. Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 2014, 62: 896–913.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
  2. 2.Zhejiang University School of MedicineHangzhouChina

Personalised recommendations