Skip to main content

Advertisement

Log in

Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Cyproheptadine (CPH), a first-generation antihistamine, enhances the delayed rectifier outward K+ current (IK) in mouse cortical neurons through a sigma-1 receptor-mediated protein kinase A pathway. In this study, we aimed to determine the effects of CPH on neuronal excitability in current-clamped pyramidal neurons in mouse medial prefrontal cortex slices. CPH (10 µmol/L) significantly reduced the current density required to generate action potentials (APs) and increased the instantaneous frequency evoked by a depolarizing current. CPH also depolarized the resting membrane potential (RMP), decreased the delay time to elicit an AP, and reduced the spike threshold potential. This effect of CPH was mimicked by a sigma-1 receptor agonist and eliminated by an antagonist. Application of tetraethylammonium (TEA) to block IK channels hyperpolarized the RMP and reduced the instantaneous frequency of APs. TEA eliminated the effects of CPH on AP frequency and delay time, but had no effect on spike threshold or RMP. The current-voltage relationship showed that CPH increased the membrane depolarization in response to positive current pulses and hyperpolarization in response to negative current pulses, suggesting that other types of membrane ion channels might also be affected by CPH. These results suggest that CPH increases the excitability of medial prefrontal cortex neurons by regulating TEA-sensitive IK channels as well as other TEA-insensitive K+ channels, probably ID and inward-rectifier Kir channels. This effect of CPH may explain its apparent clinical efficacy as an antidepressant and antipsychotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Droogmans S, Roosens B, Cosyns B, Degaillier C, Hernot S, Weytjens C, et al. Cyproheptadine prevents pergolide-induced valvulopathy in rats: an echocardiographic and histopathological study. Am J Physiol Heart Circ Physiol 2009, 296: H1940–1948.

    Article  PubMed  CAS  Google Scholar 

  2. Spangler DL, Brunton S. Efficacy and central nervous system impairment of newer-generation prescription antihistamines in seasonal allergic rhinitis. South Med J 2006, 99: 593–599.

    Article  PubMed  Google Scholar 

  3. Remy DC, Raab AW, Rittle KE, Engelhardt EL, Scriabine A, Lotti VJ. A comparison of the antiserotonin, antihistamine, and anticholinergic activity of cyproheptadine with analogues having furan nuclei fused to the 10,11-vinylene bridge. J Med Chem 1977, 20: 836–838.

    Article  PubMed  CAS  Google Scholar 

  4. Goudie AJ, Cooper GD, Cole JC, Sumnall HR. Cyproheptadine resembles clozapine in vivo following both acute and chronic administration in rats. J Psychopharmacol 2007, 21: 179–190.

    Article  PubMed  CAS  Google Scholar 

  5. Winkler JL, Skovira JW, Kan RK. Anticonvulsant efficacy of antihistamine cyproheptadine in rats exposed to the chemical warfare nerve agent soman. Neurotoxicology 2017, 58: 153–160.

    Article  PubMed  CAS  Google Scholar 

  6. Kotake H, Saitoh M, Ogino K, Hirai S, Matsuoka S, Hasegawa J, et al. On the ionic mechanism of cyproheptadine-induced bradycardia in a rabbit sinoatrial node preparation. Eur J Pharmacol 1987, 139: 307–313.

    Article  PubMed  CAS  Google Scholar 

  7. Li J, Cao B, Zhou S, Zhu J, Zhang Z, Hou T, et al. Cyproheptadine-induced myeloma cell apoptosis is associated with inhibition of the PI3K/AKT signaling. Eur J Haematol 2013, 91: 514–521.

    Article  PubMed  CAS  Google Scholar 

  8. Feng YM, Feng CW, Chen SY, Hsieh HY, Chen YH, Hsu CD. Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase. BMC Cancer 2015, 15: 134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. He YL, Zhang CL, Gao XF, Yao JJ, Hu CL, Mei YA. Cyproheptadine enhances the I(K) of mouse cortical neurons through sigma-1 receptor-mediated intracellular signal pathway. PLoS One 2012, 7: e41303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pathak D, Guan D, Foehring RC. Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex. J Neurophysiol 2016, 115: 2317–2329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Goto Y, Yang CR, Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 2010, 67: 199–207.

    Article  PubMed  Google Scholar 

  12. Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012, 76: 223–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Funahashi S. Prefrontal cortex and working memory processes. Neuroscience 2006, 139: 251–261.

    Article  PubMed  CAS  Google Scholar 

  14. Peng H, Bian XL, Ma FC, Wang KW. Pharmacological modulation of the voltage-gated neuronal Kv7/KCNQ/M-channel alters the intrinsic excitability and synaptic responses of pyramidal neurons in rat prefrontal cortex slices. Acta Pharmacol Sin 2017, 38: 1248–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lu JM, Liu DD, Li ZY, Ling C, Mei YA. Neuritin enhances synaptic transmission in medial prefrontal cortex in mice by increasing CaV3.3 surface expression. Cereb Cortex 2017: 1–14.

  16. Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001, 63: 241–320.

    Article  PubMed  CAS  Google Scholar 

  17. Zhan XQ, He YL, Yao JJ, Zhuang JL, Mei YA. The antidepressant citalopram inhibits delayed rectifier outward K(+) current in mouse cortical neurons. J Neurosci Res 2012, 90: 324–336.

    Article  PubMed  CAS  Google Scholar 

  18. Liu PW, Bean BP. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 2014, 34: 4991–5002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cudmore RH, Fronzaroli-Molinieres L, Giraud P, Debanne D. Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J Neurosci 2010, 30: 12885–12895.

    Article  PubMed  CAS  Google Scholar 

  20. Seagar M, Russier M, Caillard O, Maulet Y, Fronzaroli-Molinieres L, De San Feliciano M, et al. LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels. Proc Natl Acad Sci U S A 2017, 114: 7719–7724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hille B. Potassium channels and chloride channels. In: Hille B. Ion Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer, 2001.

  22. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010, 90: 291–366.

    Article  PubMed  CAS  Google Scholar 

  23. Williams SR, Christensen SR, Stuart GJ, Hausser M. Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. J Physiol 2002, 539: 469–483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ge L, Liu XD. Electrical resonance with voltage-gated ion channels: perspectives from biophysical mechanisms and neural electrophysiology. Acta Pharmacol Sin 2016, 37: 67–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Simons FE. H1-receptor antagonists: clinical pharmacology and therapeutics. J Allergy Clin Immunol 1989, 84: 845–861.

    Article  PubMed  CAS  Google Scholar 

  26. Orzechowski RF, Currie DS, Valancius CA. Comparative anticholinergic activities of 10 histamine H1 receptor antagonists in two functional models. Eur J Pharmacol 2005, 506: 257–264.

    Article  PubMed  CAS  Google Scholar 

  27. Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010, 31: 557–566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther 2009, 124: 195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kourrich S, Su TP, Fujimoto M, Bonci A. The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 2012, 35: 762–771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A. Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 2013, 152: 236–247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31370827) and the Shanghai Leading Academic Discipline Project [B111].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Lin He or Yan-Ai Mei.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YL., Wang, K., Zhao, QR. et al. Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex. Neurosci. Bull. 34, 759–768 (2018). https://doi.org/10.1007/s12264-018-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0225-7

Keywords

Navigation