Neuroscience Bulletin

, Volume 34, Issue 3, pp 573–588 | Cite as

Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas

  • Alexandre ValléeEmail author
  • Yves Lecarpentier
  • Rémy Guillevin
  • Jean-Noël Vallée


In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.


WNT/beta-catenin pathway PPAR gamma Glioma STAT3 pathway PI3K/Akt pathway NSAID Curcumin 


Compliance with Ethical Standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.


  1. 1.
    Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet 2012, 205: 613–621.PubMedCrossRefGoogle Scholar
  2. 2.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64: 7011–7021.PubMedCrossRefGoogle Scholar
  3. 3.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004, 432: 396–401.PubMedCrossRefGoogle Scholar
  4. 4.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl) 2016, 131: 803–820.CrossRefGoogle Scholar
  5. 5.
    Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol 2006, 1: 97–117.PubMedCrossRefGoogle Scholar
  6. 6.
    Mamelak AN, Jacoby DB. Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv 2007, 4: 175–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet Lond Engl 2012, 379: 1984–1996.CrossRefGoogle Scholar
  8. 8.
    Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-Oncol 2012, 14 Suppl 5: v1–49.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Patil SA, Hosni-Ahmed A, Jones TS, Patil R, Pfeffer LM, Miller DD. Novel approaches to glioma drug design and drug screening. Expert Opin Drug Discov 2013, 8: 1135–1151.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002, 2: 616–626.PubMedCrossRefGoogle Scholar
  11. 11.
    Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol 2010, 67: 279–283.PubMedCrossRefGoogle Scholar
  12. 12.
    Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009, 10: 468–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz Md, Moller DE, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 1996, 224: 431–437.PubMedCrossRefGoogle Scholar
  14. 14.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science 1998, 281: 1509–1512.PubMedCrossRefGoogle Scholar
  15. 15.
    Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 1999, 96: 5522–5527.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Siersbæk MS, Loft A, Aagaard MM, Nielsen R, Schmidt SF, Petrovic N, et al. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. Mol Cell Biol 2012, 32: 3452–3463.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhang K, Zhang J, Han L, Pu P, Kang C. Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 2012, 7: 740–749.CrossRefGoogle Scholar
  18. 18.
    Lecarpentier Y, Claes V, Duthoit G, Hébert JL. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 2014, 5: 429.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Effects of Cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin 2017: 1–14.Google Scholar
  20. 20.
    Vallée A, Lecarpentier Y. Alzheimer disease: crosstalk between the Canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 2016, 10: 459.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in gliomas: Interactions between the Canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol 2017, 8: 352.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2017. Scholar
  23. 23.
    Lecarpentier Y, Claes V, Vallée A, Hébert JL. Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med 2017, 6: 14.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lecarpentier Y, Claes V, Vallée A, Hébert JL. Interactions between PPAR gamma and the Canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res 2017, 2017: 1–9.CrossRefGoogle Scholar
  25. 25.
    Lecarpentier Y, Vallée A. Opposite interplay between PPAR gamma and Canonical Wnt/beta-catenin pathway in amyotrophic lateral sclerosis. Front Neurol 2016, 7: 100. Scholar
  26. 26.
    Zhang Z, Chen H, Chen Y, Cheng X. Significance of beta-catenin and Cyclin D1 express in glioma. Chin J Cell Mol Immunol 2009, 25: 1010–1012.Google Scholar
  27. 27.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci 2017, 62: 368–379.PubMedCrossRefGoogle Scholar
  28. 28.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci 2017. Scholar
  29. 29.
    Gruetter R. Glycogen: the forgotten cerebral energy store. J Neurosci Res 2003, 74: 179–183.PubMedCrossRefGoogle Scholar
  30. 30.
    Thompson CB. Wnt meets Warburg: another piece in the puzzle? EMBO J 2014, 33: 1420–1422.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Warburg O. On the origin of cancer cells. Science 1956, 123: 309–314.PubMedCrossRefGoogle Scholar
  32. 32.
    Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997, 272: 18779–18789.PubMedCrossRefGoogle Scholar
  33. 33.
    Nager M, Bhardwaj D, Cantí C, Medina L, Nogués P, Herreros J. β-Catenin signalling in glioblastoma multiforme and glioma-initiating cells. Chemother Res Pract 2012, 2012: 192362. Scholar
  34. 34.
    Jha MK, Suk K. Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas. Brain Tumor Res Treat 2013, 1: 57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127: 469–480.PubMedCrossRefGoogle Scholar
  36. 36.
    Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science 2002, 296: 1644–1646.PubMedCrossRefGoogle Scholar
  37. 37.
    Nusse R. Wnt signaling in disease and in development. Cell Res 2005, 15: 28–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, et al. The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncol 2011, 13: 736–747.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sarin S, Bernath A. Turcot syndrome (glioma polyposis): a case report. South Med J 2008, 101: 1273–1274.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu J, Fang J, Yang Z, Chen F, Liu J, Wang Y. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation. J Clin Neurosci 2012, 19: 1428–1432.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang Z, Wang Y, Fang J, Chen F, Liu J, Wu J, et al. Downregulation of WIF-1 by hypermethylation in astrocytomas. Acta Biochim Biophys Sin 2010, 42: 418–425.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu J, Wang H, Zuo Y, Farmer SR. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 2006, 26: 5827–5837.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Moldes M, Zuo Y, Morrison RF, Silva D, Park BH, Liu J, et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J 2003, 376: 607–613.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem 2004, 279: 35583–35594.PubMedCrossRefGoogle Scholar
  45. 45.
    Harrison-Uy SJ, Pleasure SJ. Wnt signaling and forebrain development. Cold Spring Harb Perspect Biol 2012, 4: a008094. Scholar
  46. 46.
    Ille F, Sommer L. Wnt signaling: multiple functions in neural development. Cell Mol Life Sci CMLS 2005, 62: 1100–1108.PubMedCrossRefGoogle Scholar
  47. 47.
    Oliva CA, Vargas JY, Inestrosa NC. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 2013, 7: 224.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Salinas PC. Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb Perspect Biol 2012, 4.Google Scholar
  49. 49.
    Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 2012, 7: 725–730.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Marchetti B, Pluchino S. Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 2013, 19: 144–156.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Caricasole A, Ferraro T, Iacovelli L, Barletta E, Caruso A, Melchiorri D, et al. Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 2003, 278: 37024–37031.PubMedCrossRefGoogle Scholar
  52. 52.
    Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem 2008, 283: 21427–21432.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003, 116: 2627–2634.PubMedCrossRefGoogle Scholar
  54. 54.
    Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 2004, 23: 8520–8526.PubMedCrossRefGoogle Scholar
  55. 55.
    Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008, 121: 737–746.PubMedCrossRefGoogle Scholar
  56. 56.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 1997, 16: 3797–3804.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS, Cregan SP. The JNK- and AKT/GSK3β-signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 2012, 7: e46885. Scholar
  58. 58.
    Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci 2010, 11: 539–551.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010, 35: 161–168.PubMedCrossRefGoogle Scholar
  60. 60.
    Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW. Mechanisms regulating glioma invasion. Cancer Lett 2015, 362: 1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bright JJ, Kanakasabai S, Chearwae W, Chakraborty S. PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res 2008, 2008: 658520.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137: 354–366.PubMedCrossRefGoogle Scholar
  63. 63.
    Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci J Virtual Libr 2008, 13: 1813–1826.CrossRefGoogle Scholar
  64. 64.
    Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 2004, 25: 331–336.PubMedCrossRefGoogle Scholar
  65. 65.
    Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr 2002, 22: 167–197.PubMedCrossRefGoogle Scholar
  66. 66.
    Lecarpentier Y, Claes V, Hébert JL. PPARs, cardiovascular metabolism, and function: near- or far-from-equilibrium pathways. PPAR Res 2010, 2010.Google Scholar
  67. 67.
    Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008, 8: 482–491.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ricote M, Glass CK. PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 2007, 1771: 926–935.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 2006, 116: 2012–2021.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jansson EA, Are A, Greicius G, Kuo IC, Kelly D, Arulampalam V, et al. The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc Natl Acad Sci U S A 2005, 102: 1460–1465.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 2002, 143: 2106–2118.PubMedCrossRefGoogle Scholar
  72. 72.
    Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009, 5: 442–447.PubMedCrossRefGoogle Scholar
  73. 73.
    Vallée A, Lecarpentier Y, Vallée JN. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int J Mol Sci 2017, 18.
  74. 74.
    Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017, 8: 90579–90604.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lecarpentier Y, Schussler O, Claes V, Vallée A. The myofibroblast: TGFβ-1, a conductor which plays a key role in fibrosis by regulating the balance between PPARγ and the Canonical WNT pathway. Nucl Receptor Res 2017, 4: 23. Scholar
  76. 76.
    Djouadi F, Lecarpentier Y, Hébert JL, Charron P, Bastin J, Coirault C. A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 2009, 84: 83–90.PubMedCrossRefGoogle Scholar
  77. 77.
    Ben-Ze’ev A, Geiger B. Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 1998, 10: 629–639.Google Scholar
  78. 78.
    Maeda O, Usami N, Kondo M, Takahashi M, Goto H, Shimokata K, et al. Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenin-deficient cell line. Oncogene 2004, 23: 964–972.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhurinsky J, Shtutman M, Ben-Ze’ev A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by beta-catenin and plakoglobin. Mol Cell Biol 2000, 20: 4238–4252.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 1997, 30: 1512–1520.PubMedCrossRefGoogle Scholar
  81. 81.
    Denysenko T, Annovazzi L, Cassoni P, Melcarne A, Mellai M, Schiffer D. WNT/β-catenin signaling pathway and downstream modulators in low- and high-grade glioma. Cancer Genomics Proteomics 2016, 13: 31–45.PubMedGoogle Scholar
  82. 82.
    Liu C, Tu Y, Sun X, Jiang J, Jin X, Bo X, et al. Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 2011, 11: 105–112.PubMedCrossRefGoogle Scholar
  83. 83.
    Sareddy GR, Panigrahi M, Challa S, Mahadevan A, Babu PP. Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int 2009, 55: 307–317.Google Scholar
  84. 84.
    Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, et al. Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett 2012, 325: 42–53.PubMedCrossRefGoogle Scholar
  85. 85.
    Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, et al. β-catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther 2011, 11: 753–761.PubMedCrossRefGoogle Scholar
  86. 86.
    Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell 2010, 17: 497–509.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Riganti C, Salaroglio IC, Caldera V, Campia I, Kopecka J, Mellai M, et al. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway. Neuro-Oncol 2013, 15: 1502–1517.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 2011, 20: 427–442.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, et al. Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma. Mol Cell Neurosci 2013, 54: 44–57.PubMedCrossRefGoogle Scholar
  90. 90.
    Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 2009, 16: 351–361.PubMedCrossRefGoogle Scholar
  91. 91.
    Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, et al. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 2007, 257: 172–181.PubMedCrossRefGoogle Scholar
  92. 92.
    Utsuki S, Sato Y, Oka H, Tsuchiya B, Suzuki S, Fujii K. Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol 2002, 57: 187–192.PubMedCrossRefGoogle Scholar
  93. 93.
    Chafey P, Finzi L, Boisgard R, Caüzac M, Clary G, Broussard C, et al. Proteomic analysis of beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics 2009, 9: 3889–3900.PubMedCrossRefGoogle Scholar
  94. 94.
    Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 2010, 70: 859–862.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Niehrs C, Acebron SP. Mitotic and mitogenic Wnt signalling. EMBO J 2012, 31: 2705–2713.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 2008, 105: 18782–18787.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000, 275: 21797–21800.PubMedCrossRefGoogle Scholar
  98. 98.
    Kim J, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 2007, 27: 7381–7393.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 2001, 70: 33–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Adeva M, González-Lucán M, Seco M, Donapetry C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion 2013, 13: 615–629.PubMedCrossRefGoogle Scholar
  101. 101.
    McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 2008, 283: 22700–22708.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JMR, et al. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 2013, 32: 1638–1650.PubMedCrossRefGoogle Scholar
  103. 103.
    Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014, 33: 1454–1473.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 2002, 277: 23111–23115.PubMedCrossRefGoogle Scholar
  105. 105.
    Froberg MK, Gerhart DZ, Enerson BE, Manivel C, Guzman-Paz M, Seacotte N, et al. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport 2001, 12: 761–765.PubMedCrossRefGoogle Scholar
  106. 106.
    Liu Y, Yan W, Zhang W, Chen L, You G, Bao Z, et al. MiR-218 reverses high invasiveness of glioblastoma cells by targeting the oncogenic transcription factor LEF1. Oncol Rep 2012, 28: 1013–1021.PubMedCrossRefGoogle Scholar
  107. 107.
    Tonn JC, Goldbrunner R. Mechanisms of glioma cell invasion. Acta Neurochir Suppl 2003, 88: 163–167.PubMedGoogle Scholar
  108. 108.
    Rao JS, Steck PA, Mohanam S, Stetler-Stevenson WG, Liotta LA, Sawaya R. Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res 1993, 53: 2208–2211.PubMedGoogle Scholar
  109. 109.
    Götze S, Wolter M, Reifenberger G, Müller O, Sievers S. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 2010, 126: 2584–2593.PubMedGoogle Scholar
  110. 110.
    Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev 1999, 9: 15–21.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim SA, Kwak J, Nam HY, Chun SM, Lee BW, Lee HJ, et al. Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: pathologic and prognostic correlations. Mod Pathol Off J U S Can Acad Pathol Inc 2013, 26: 626–639.Google Scholar
  112. 112.
    Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006, 116: 590–597.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001, 142: 4195–4202.PubMedCrossRefGoogle Scholar
  114. 114.
    Park KS, Lee RD, Kang SK, Han SY, Park KL, Yang KH, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res 2004, 297: 424–433.PubMedCrossRefGoogle Scholar
  115. 115.
    Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 2000, 289: 1357–1360.PubMedCrossRefGoogle Scholar
  116. 116.
    Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1998, 1: 465–470.PubMedCrossRefGoogle Scholar
  117. 117.
    Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, et al. Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci U S A 2000, 97: 10990–10995.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, et al. Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 1999, 3: 799–804.PubMedCrossRefGoogle Scholar
  119. 119.
    Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, et al. PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med Camb Mass 2010, 16: 199–209.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Tseng CH, Tseng FH. Peroxisome proliferator-activated receptor agonists and bladder cancer: lessons from animal studies. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2012, 30: 368–402.CrossRefGoogle Scholar
  121. 121.
    Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, et al. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 2000, 270: 400–405.PubMedCrossRefGoogle Scholar
  122. 122.
    Chearwae W, Bright JJ. PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer 2008, 99: 2044–2053.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Liu DC, Zang CB, Liu HY, Possinger K, Fan SG, Elstner E. A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells. Acta Pharmacol Sin 2004, 25: 1312–1319.PubMedGoogle Scholar
  124. 124.
    Zang C, Wächter M, Liu H, Posch MG, Fenner MH, Stadelmann C, et al. Ligands for PPARgamma and RAR cause induction of growth inhibition and apoptosis in human glioblastomas. J Neurooncol 2003, 65: 107–118.PubMedCrossRefGoogle Scholar
  125. 125.
    Wan Z, Shi W, Shao B, Shi J, Shen A, Ma Y, et al. Peroxisome proliferator-activated receptor γ agonist pioglitazone inhibits β-catenin-mediated glioma cell growth and invasion. Mol Cell Biochem 2011, 349: 1–10.PubMedCrossRefGoogle Scholar
  126. 126.
    Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, et al. Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 2006, 70: 1524–1533.PubMedCrossRefGoogle Scholar
  127. 127.
    Papi A, Tatenhorst L, Terwel D, Hermes M, Kummer MP, Orlandi M, et al. PPARgamma and RXRgamma ligands act synergistically as potent antineoplastic agents in vitro and in vivo glioma models. J Neurochem 2009, 109: 1779–1790.PubMedCrossRefGoogle Scholar
  128. 128.
    Cilibrasi C, Butta V, Riva G, Bentivegna A. Pioglitazone effect on glioma stem cell lines: really a promising drug therapy for glioblastoma? PPAR Res 2016, 2016: 7175067.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F. β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells. Med Oncol Northwood Lond Engl 2011, 28: 608–614.CrossRefGoogle Scholar
  130. 130.
    Spagnolo A, Grant EN, Glick R, Lichtor T, Feinstein DL. Differential effects of PPARgamma agonists on the metabolic properties of gliomas and astrocytes. Neurosci Lett 2007, 417: 72–77.PubMedCrossRefGoogle Scholar
  131. 131.
    Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 2002, 81: 1052–1060.PubMedCrossRefGoogle Scholar
  132. 132.
    Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 2007, 96: 1293–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 2012, 7: e50500.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pestereva E, Kanakasabai S, Bright JJ. PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells. Br J Cancer 2012, 106: 1702–1712.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Khoo NKH, Hebbar S, Zhao W, Moore SA, Domann FE, Robbins ME. Differential activation of catalase expression and activity by PPAR agonists: implications for astrocyte protection in anti-glioma therapy. Redox Biol 2013, 1: 70–79.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Leve F, Peres-Moreira RJ, Binato R, Abdelhay E, Morgado-Díaz JA. LPA induces colon cancer cell proliferation through a cooperation between the ROCK and STAT-3 pathways. PLoS One 2015, 10: e0139094.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Tsujita Y, Horiguchi A, Tasaki S, Isono M, Asano T, Ito K, et al. STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells. Oncol Rep 2017, 38: 2197–2204.PubMedCrossRefGoogle Scholar
  138. 138.
    Klein JD, Sano D, Sen M, Myers JN, Grandis JR, Kim S. STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One 2014, 9: e81819.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Villalva C, Martin-Lannerée S, Cortes U, Dkhissi F, Wager M, Le Corf A, et al. STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy? Int J Cancer 2011, 128: 826–838.PubMedCrossRefGoogle Scholar
  140. 140.
    Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463: 318–325.PubMedCrossRefGoogle Scholar
  141. 141.
    Kim JE, Patel M, Ruzevick J, Jackson CM, Lim M. STAT3 activation in glioblastoma: Biochemical and therapeutic implications. Cancers 2014, 6: 376–395.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Harrison DA. The Jak/STAT pathway. Cold Spring Harb Perspect Biol 2012, 4.
  143. 143.
    Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 2014, 6: 926–957.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG. Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery 2010, 67: 1386–1395, discussion 1395.Google Scholar
  145. 145.
    Li GH, Wei H, Lv SQ, Ji H, Wang DL. Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int J Oncol 2010, 37: 103–110.PubMedGoogle Scholar
  146. 146.
    Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells Dayt Ohio 2009, 27: 2383–2392.CrossRefGoogle Scholar
  147. 147.
    Mo C, Chearwae W, Bright JJ. PPARgamma regulates LIF-induced growth and self-renewal of mouse ES cells through Tyk2-Stat3 pathway. Cell Signal 2010, 22: 495–500.PubMedCrossRefGoogle Scholar
  148. 148.
    Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M, et al. The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 2012, 30: 169–184.PubMedCrossRefGoogle Scholar
  149. 149.
    Stechishin OD, Luchman HA, Ruan Y, Blough MD, Nguyen SA, Kelly JJ, et al. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-Oncol 2013, 15: 198–207.PubMedCrossRefGoogle Scholar
  150. 150.
    Park EJ, Park SY, Joe E, Jou I. 15d-PGJ2 and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem 2003, 278: 14747–14752.PubMedCrossRefGoogle Scholar
  151. 151.
    Yan S, Zhou C, Zhang W, Zhang G, Zhao X, Yang S, et al. beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett 2008, 271: 85–97.PubMedCrossRefGoogle Scholar
  152. 152.
    Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 2010, 1366: 27–37.PubMedCrossRefGoogle Scholar
  153. 153.
    Popescu AM, Purcaru SO, Alexandru O, Dricu A. New perspectives in glioblastoma antiangiogenic therapy. Contemp Oncol Poznan Pol 2016, 20: 109–118.Google Scholar
  154. 154.
    Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancers 2011, 3: 3242–3278.PubMedGoogle Scholar
  155. 155.
    Chakravarti A, Dicker A, Mehta M. The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol 2004, 58: 927–931.CrossRefGoogle Scholar
  156. 156.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005, 353: 2012–2024.PubMedCrossRefGoogle Scholar
  157. 157.
    Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012, 16: 15–31.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Vogt PK, Hart JR. PI3K and STAT3: a new alliance. Cancer Discov 2011, 1: 481–486.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014, 13: 140–156.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sami A, Karsy M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol J Int Soc Oncodevelopmental Biol Med 2013, 34: 1991–2002.CrossRefGoogle Scholar
  161. 161.
    Wang L, Chen L, Wang Q, Wang L, Wang H, Shen Y, et al. Circulating endothelial progenitor cells are involved in VEGFR-2-related endothelial differentiation in glioma. Oncol Rep 2014, 32: 2007–2014.PubMedCrossRefGoogle Scholar
  162. 162.
    Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy. Neuro-Oncol 2016, 18: 329–339.PubMedCrossRefGoogle Scholar
  163. 163.
    Gray GK, McFarland BC, Nozell SE, Benveniste EN. NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother 2014, 14: 1293–306.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Atkinson GP, Nozell SE, Benveniste ETN. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 2010, 10: 575–586.PubMedCrossRefGoogle Scholar
  165. 165.
    Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007, 21: 1037–1049.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011, 9: 298–310.PubMedCrossRefGoogle Scholar
  167. 167.
    Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011, 42: 719–730.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget 2015, 6: 13006–13018.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Yang C, Iyer RR, Yu ACH, Yong RL, Park DM, Weil RJ, et al. β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci U S A 2012, 109: 6963–6968.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2009, 2: ra73.Google Scholar
  171. 171.
    Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. ScientificWorldJournal 2013, 2013: 417413.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Han L, Yang Y, Yue X, Huang K, Liu X, Pu P, et al. Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Res 2010, 1366: 9–17.PubMedCrossRefGoogle Scholar
  173. 173.
    Bernardi A, Frozza RL, Hoppe JB, Salbego C, Pohlmann AR, Battastini AMO, et al. The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways. Int J Nanomedicine 2013, 8: 711–728.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhang J, Huang K, Shi Z, Zou J, Wang Y, Jia Z, et al. High β-catenin/Tcf-4 activity confers glioma progression via direct regulation of AKT2 gene expression. Neuro-Oncol 2011, 13: 600–609.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lee MW, Kim DS, Kim HR, Kim HJ, Yang JM, Ryu S, et al. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells. Biochem Biophys Res Commun 2012, 417: 552–557.PubMedCrossRefGoogle Scholar
  176. 176.
    Lin CL, Wang MH, Qin YF, Fang M, Xie BB, Zhong XY. Differentiation of SWO-38 glioma cells induced by CDA-2 is mediated by peroxisome proliferator-activated receptor gamma. J Neurooncol 2009, 95: 29–36.PubMedCrossRefGoogle Scholar
  177. 177.
    Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 2017, 22: 148–156.PubMedCrossRefGoogle Scholar
  178. 178.
    Wu M, Guan J, Li C, Gunter S, Nusrat L, Ng S, et al. Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget 2017, 8: 82217–82230.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res Off J Am Assoc Cancer Res 2014, 20: 1104–1113.CrossRefGoogle Scholar
  180. 180.
    Thompson WJ, Piazza GA, Li H, Liu L, Fetter J, Zhu B, et al. Exisulind induction of apoptosis involves guanosine 3’,5’-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 2000, 60: 3338–3342.PubMedGoogle Scholar
  181. 181.
    Lan F, Yue X, Han L, Shi Z, Yang Y, Pu P, et al. Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelial cancer. Int J Oncol 2012, 40: 519–526.PubMedGoogle Scholar
  182. 182.
    Lee HC, Park IC, Park MJ, An S, Woo SH, Jin HO, et al. Sulindac and its metabolites inhibit invasion of glioblastoma cells via down-regulation of Akt/PKB and MMP-2. J Cell Biochem 2005, 94: 597–610.PubMedCrossRefGoogle Scholar
  183. 183.
    Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010, 10: 181–193.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Hau P, Kunz-Schughart L, Bogdahn U, Baumgart U, Hirschmann B, Weimann E, et al. Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas - a phase II study. Oncology 2007, 73: 21–25.PubMedCrossRefGoogle Scholar
  185. 185.
    Tinsley HN, Gary BD, Keeton AB, Lu W, Li Y, Piazza GA. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells. Cancer Prev Res Phila Pa 2011, 4: 1275–1284.CrossRefGoogle Scholar
  186. 186.
    Tinsley HN, Grizzle WE, Abadi A, Keeton A, Zhu B, Xi Y, et al. New NSAID targets and derivatives for colorectal cancer chemoprevention. Recent Results Cancer Res 2013, 191: 105–120.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Gilroy DW, Colville-Nash PR. New insights into the role of COX 2 in inflammation. J Mol Med Berl Ger 2000, 78: 121–129.CrossRefGoogle Scholar
  188. 188.
    Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JCL, Bernardes A, et al. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. Nucl Recept Signal 2015, 13: e004.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Andersen V, Vogel U. Systematic review: interactions between aspirin, and other nonsteroidal anti-inflammatory drugs, and polymorphisms in relation to colorectal cancer. Aliment Pharmacol Ther 2014, 40: 147–159.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev J Clin Ther 2009, 14: 141–153.Google Scholar
  191. 191.
    Rodriguez GA, Shah AH, Gersey ZC, Shah SS, Bregy A, Komotar RJ, et al. Investigating the therapeutic role and molecular biology of curcumin as a treatment for glioblastoma. Ther Adv Med Oncol 2016, 8: 248–260.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011, 12: 332–347.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Sordillo LA, Sordillo PP, Helson L. Curcumin for the treatment of glioblastoma. Anticancer Res 2015, 35: 6373–6378.PubMedGoogle Scholar
  194. 194.
    Luthra PM, Lal N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem 2016, 109: 23–35.PubMedCrossRefGoogle Scholar
  195. 195.
    Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 2004, 44: 97–111.PubMedCrossRefGoogle Scholar
  196. 196.
    Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007, 595: 105–125.PubMedCrossRefGoogle Scholar
  197. 197.
    Weissenberger J, Priester M, Bernreuther C, Rakel S, Glatzel M, Seifert V, et al. Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway. Clin Cancer Res 2010, 16: 5781–5795.PubMedCrossRefGoogle Scholar
  198. 198.
    Mazidi M, Karimi E, Meydani M, Ghayour-Mobarhan M, Ferns GA. Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo. World J Methodol 2016, 6: 112–117.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Chen A, Xu J. Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 2005, 288: G447–456.PubMedCrossRefGoogle Scholar
  200. 200.
    He M, Li Y, Zhang L, Li L, Shen Y, Lin L, et al. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol Rep 2014, 32: 173–180.PubMedCrossRefGoogle Scholar
  201. 201.
    Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007, 3: 635–637.PubMedCrossRefGoogle Scholar
  202. 202.
    Ackenheil M, Weber K. Developments in antipsychotic therapy with regard to hypotheses for schizophrenia. Dialogues Clin Neurosci 2002, 4: 426–431.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Wiklund ED, Catts VS, Catts SV, Ng TF, Whitaker NJ, Brown AJ, et al. Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int J Cancer 2010, 126: 28–40.PubMedCrossRefGoogle Scholar
  204. 204.
    Guo QH, Yang HJ, Wang SD. Olanzapine inhibits the proliferation and induces the differentiation of glioma stem-like cells through modulating the Wnt signaling pathway in vitro. Eur Rev Med Pharmacol Sci 2015, 19: 4455.PubMedGoogle Scholar
  205. 205.
    Wang Y, Huang N, Li H, Liu S, Chen X, Yu S, et al. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma. Oncotarget 2017, 8: 37511–37524.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011, 11: 85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Horm Athens Greece 2012, 11: 8–20.CrossRefGoogle Scholar
  208. 208.
    Fantuzzi G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013, 64: 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Feng H, Liu Q, Zhang N, Zheng L, Sang M, Feng J, et al. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol Res 2013, 21: 165–171.PubMedCrossRefGoogle Scholar
  210. 210.
    Kato S, Abarzua-Catalan L, Trigo C, Delpiano A, Sanhueza C, García K, et al. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget 2015, 6: 21100–21119.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr 2007, 86: s858–866.PubMedCrossRefGoogle Scholar
  212. 212.
    Reinke L, Lam AP, Flozak AS, Varga J, Gottardi CJ. Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. Biochem Biophys Res Commun 2016, 470: 606–612.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Porcile C, Di Zazzo E, Monaco ML, D’Angelo G, Passarella D, Russo C, et al. Adiponectin as novel regulator of cell proliferation in human glioblastoma. J Cell Physiol 2014, 229: 1444–1454.PubMedCrossRefGoogle Scholar
  214. 214.
    Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 2016, 22: 2441–2459.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Vansaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res Off J Am Assoc Cancer Res 2013, 19: 1926–1932.CrossRefGoogle Scholar
  216. 216.
    Stedt H, Samaranayake H, Pikkarainen J, Määttä AM, Alasaarela L, Airenne K, et al. Improved therapeutic effect on malignant glioma with adenoviral suicide gene therapy combined with temozolomide. Gene Ther 2013, 20: 1165–1171.PubMedCrossRefGoogle Scholar
  217. 217.
    Wang XF, Wu DM, Li BX, Lu YJ, Yang BF. Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother Res PTR 2009, 23: 303–307.PubMedCrossRefGoogle Scholar
  218. 218.
    Li L, Lin X, Shoemaker AR, Albert DH, Fesik SW, Shen Y. Hypoxia-inducible factor-1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin Cancer Res 2006, 12: 4747–4754.PubMedCrossRefGoogle Scholar
  219. 219.
    Mathieu V, De Nève N, Le Mercier M, Dewelle J, Gaussin JF, Dehoux M, et al. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia N Y N 2008, 10: 1383–1392.CrossRefGoogle Scholar
  220. 220.
    Le Mercier M, Lefranc F, Mijatovic T, Debeir O, Haibe-Kains B, Bontempi G, et al. Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol 2008, 229: 172–183.PubMedCrossRefGoogle Scholar
  221. 221.
    Yuan Y, Xue X, Guo RB, Sun XL, Hu G. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway. CNS Neurosci Ther 2012, 18: 536–546.PubMedCrossRefGoogle Scholar
  222. 222.
    Huang W, Zhang C, Cui M, Niu J, Ding W. Inhibition of Bevacizumab-induced epithelial-mesenchymal transition by BATF2 overexpression involves the suppression of Wnt/β-Catenin signaling in glioblastoma cells. Anticancer Res 2017, 37: 4285–4294.PubMedGoogle Scholar
  223. 223.
    Chen J, Fu X, Wan Y, Wang Z, Jiang D, Shi L. miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1. Tumour Biol J Int Soc Oncodevelopmental Biol Med 2014, 35: 6293–6302.CrossRefGoogle Scholar
  224. 224.
    Zhang K, Zhu S, Liu Y, Dong X, Shi Z, Zhang A, et al. ICAT inhibits glioblastoma cell proliferation by suppressing Wnt/β-catenin activity. Cancer Lett 2015, 357: 404–411.PubMedCrossRefGoogle Scholar
  225. 225.
    Kohsaka S, Wang L, Yachi K, Mahabir R, Narita T, Itoh T, et al. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol Cancer Ther 2012, 11: 1289–1299.PubMedCrossRefGoogle Scholar
  226. 226.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med 2014, 35: 8653–8658.CrossRefGoogle Scholar
  227. 227.
    Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 2007, 28: 1485–1490.PubMedCrossRefGoogle Scholar
  228. 228.
    Vyas AR, Hahm ER, Arlotti JA, Watkins S, Stolz DB, Desai D, et al. Chemoprevention of prostate cancer by d,l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res 2013, 73: 5985–5995.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Lenzi M, Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Cancer Treat Res 2014, 159: 207–223.PubMedCrossRefGoogle Scholar
  230. 230.
    Lan F, Pan Q, Yu H, Yue X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma. J Neurochem 2015, 134: 811–818.PubMedCrossRefGoogle Scholar
  231. 231.
    Negrette-Guzmán M, Huerta-Yepez S, Vega MI, León-Contreras JC, Hernández-Pando R, Medina-Campos ON, et al. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem Toxicol 2017, 100: 90–102.PubMedCrossRefGoogle Scholar
  232. 232.
    Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun 2016, 7: 11996.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Dash R, Su ZZ, Lee SG, Azab B, Boukerche H, Sarkar D, et al. Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene 2010, 29: 4412–4423.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alexandre Vallée
    • 1
    • 2
    Email author
  • Yves Lecarpentier
    • 3
  • Rémy Guillevin
    • 4
  • Jean-Noël Vallée
    • 1
    • 5
  1. 1.Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348University of PoitiersPoitiersFrance
  2. 2.Délégation à la Recherche Clinique et à l’Innovation (DRCI)Hôpital FochSuresnesFrance
  3. 3.Centre de Recherche CliniqueGrand Hôpital de l’Est FrancilienMeauxFrance
  4. 4.DACTIM, UMR CNRS 7348University of Poitiers et CHU de PoitiersPoitiersFrance
  5. 5.CHU Amiens PicardieUniversity of Picardie Jules VerneAmiensFrance

Personalised recommendations