Neuroscience Bulletin

, Volume 34, Issue 3, pp 405–418 | Cite as

Atlas of the Striatum and Globus Pallidus in the Tree Shrew: Comparison with Rat and Mouse

  • Rong-Jun Ni
  • Zhao-Huan Huang
  • Yu-Mian Shu
  • Yu Wang
  • Tao Li
  • Jiang-Ning ZhouEmail author
Original Article


The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.


Striatum Globus pallidus Basal ganglia Reconstruction Rodent Parvalbumin 



This study was supported by the National Natural Science Foundation of China (31500859 and 91432305) and the Strategic Priority Research Program of the Chinese Academy of Science (XDB02030001).

Authors’ Contributions

RJN was involved in tissue processing, histochemical analysis, collection and interpretation of data, and writing the manuscript; ZHH and YMS were involved in tissue processing and data interpretation; YW was involved in 3D brain reconstruction; TL was responsible for revising the manuscript; and JNZ was responsible for experimental design and manuscript preparation.

Compliance with Ethical Standards

Conflict of interest

All authors claim that there are no conflicts of interest.

Supplementary material

Supplementary material 1 (MP4 8711 kb)


  1. 1.
    Fujiyama F. Anatomical connections of the basal ganglia. Brain Nerve 2009, 61: 341–349.PubMedGoogle Scholar
  2. 2.
    Prensa L, Cossette M, Parent A. Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 2000, 20: 207–213.CrossRefPubMedGoogle Scholar
  3. 3.
    Yelnik J, Damier P, Bejjani BP, Francois C, Gervais D, Dormont D, et al. Functional mapping of the human globus pallidus: contrasting effect of stimulation in the internal and external pallidum in Parkinson’s disease. Neuroscience 2000, 101: 77–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Gimenez-Amaya JM, McFarland NR, de las Heras S, Haber SN. Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 1995, 354: 127–149.CrossRefPubMedGoogle Scholar
  5. 5.
    Khibnik LA, Tritsch NX, Sabatini BL. A direct projection from mouse primary visual cortex to dorsomedial striatum. PLoS One 2014, 9: e104501.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Day-Brown JD, Wei H, Chomsung RD, Petry HM, Bickford ME. Pulvinar projections to the striatum and amygdala in the tree shrew. Front Neuroanat 2010, 4: 143.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    French SJ, Totterdell S. Quantification of morphological differences in boutons from different afferent populations to the nucleus accumbens. Brain Res 2004, 1007: 167–177.CrossRefPubMedGoogle Scholar
  8. 8.
    Schmitt O, Eipert P, Kettlitz R, Lessmann F, Wree A. The connectome of the basal ganglia. Brain Struct Funct 2016, 221: 753–814.CrossRefPubMedGoogle Scholar
  9. 9.
    Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014, 17: 1022–1030.CrossRefPubMedGoogle Scholar
  10. 10.
    Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011, 34: 441–466.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ni RJ, Luo PH, Shu YM, Chen JT, Zhou JN. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews. Neuroscience 2016, 333: 162–180.CrossRefPubMedGoogle Scholar
  12. 12.
    Gao HR, Zhuang QX, Zhang YX, Chen ZP, Li B, Zhang XY, et al. Orexin directly enhances the excitability of globus pallidus internus neurons in rat by co-activating OX1 and OX2 receptors. Neurosci Bull 2017, 33: 365–372.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eid L, Parent M. Chemical anatomy of pallidal afferents in primates. Brain Struct Funct 2016, 221: 4291–4317.CrossRefPubMedGoogle Scholar
  14. 14.
    McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 2000, 20: 3798–3813.CrossRefPubMedGoogle Scholar
  15. 15.
    Darvas M, Henschen CW, Palmiter RD. Contributions of signaling by dopamine neurons in dorsal striatum to cognitive behaviors corresponding to those observed in Parkinson’s disease. Neurobiol Dis 2014, 65: 112–123.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou D, Pang F, Liu S, Shen Y, Liu L, Fang Z, et al. Altered motor-striatal plasticity and cortical functioning in patients with schizophrenia. Neurosci Bull 2017, 33: 307–311.CrossRefPubMedGoogle Scholar
  17. 17.
    Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. Neuroreport 2007, 18: 951–955.CrossRefPubMedGoogle Scholar
  18. 18.
    Hurd YL, Svensson P, Ponten M. The role of dopamine, dynorphin, and CART systems in the ventral striatum and amygdala in cocaine abuse. Ann N Y Acad Sci 1999, 877: 499–506.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang B, Yang X, Sun A, Xu L, Wang S, Lin W, et al. Extracellular signal-regulated kinase in nucleus accumbens mediates propofol self-administration in rats. Neurosci Bull 2016, 32: 531–537.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li C, Yan Y, Cheng J, Xiao G, Gu J, Zhang L, et al. Toll-like receptor 4 deficiency causes reduced exploratory behavior in mice under approach-avoidance conflict. Neurosci Bull 2016, 32: 127–136.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tsukiyama-Kohara K, Kohara M. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 2014, 63: 367–374.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang J, Chai A, Zhou Q, Lv L, Wang L, Yang Y, et al. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One 2013, 8: e80980.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao F, Guo X, Wang Y, Liu J, Lee WH, Zhang Y. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One 2014, 9: e104191.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma KL, Gao JH, Huang ZQ, Zhang Y, Kuang DX, Jiang QF, et al. Motor function in MPTP-treated tree shrews (Tupaia belangeri chinensis). Neurochem Res 2013, 38: 1935–1940.CrossRefGoogle Scholar
  25. 25.
    Ni RJ, Shu YM, Luo PH, Fang H, Wang Y, Yao L, et al. Immunohistochemical mapping of neuropeptide Y in the tree shrew brain. J Comp Neurol 2015, 523: 495–529.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu JS, Yue F, Liu X, Chen T, Zhuo M. Characterization of the anterior cingulate cortex in adult tree shrew. Mol Pain 2016, 12: 1744806916684515.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kozicz T, Bordewin LA, Czeh B, Fuchs E, Roubos EW. Chronic psychosocial stress affects corticotropin-releasing factor in the paraventricular nucleus and central extended amygdala as well as urocortin 1 in the non-preganglionic Edinger-Westphal nucleus of the tree shrew. Psychoneuroendocrinology 2008, 33: 741–754.CrossRefPubMedGoogle Scholar
  28. 28.
    Wolter R, Tauer U, Fuchs E, Volk B. Mapping of cytoskeletal components in the hippocampal formation of the tree shrew (Tupaia belangeri). J Chem Neuroanat 1999, 17: 65–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Lin N, Xiong LL, Zhang RP, Zheng H, Wang L, Qian ZY, et al. Injection of Abeta1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew. Apoptosis 2016, 21: 621–640.CrossRefPubMedGoogle Scholar
  30. 30.
    Shen F, Duan Y, Jin S, Sui N. Varied behavioral responses induced by morphine in the tree shrew: a possible model for human opiate addiction. Front Behav Neurosci 2014, 8: 333.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci 1996, 37: 1380–1395.PubMedGoogle Scholar
  32. 32.
    Ge GZ, Xia HJ, He BL, Zhang HL, Liu WJ, Shao M, et al. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. Int J Cancer 2016, 138: 642–651.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, et al. Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci Rep 2015, 5: 15970.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, et al. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Sci Rep 2016, 6: 24905.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yao YG. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)? Zool Res 2017, 38: 118–126.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tong Y, Hao J, Tu Q, Yu H, Yan L, Li Y, et al. A tree shrew glioblastoma model recapitulates features of human glioblastoma. Oncotarget 2017, 8: 17897–17907.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang C, Ruan P, Ou C, Su J, Cao J, Luo C, et al. Chronic hepatitis B virus infection and occurrence of hepatocellular carcinoma in tree shrews (Tupaia belangeri chinensis). Virol J 2015, 12: 26.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Van Kampen M, Schmitt U, Hiemke C, Fuchs E. Diazepam has no beneficial effects on stress-induced behavioural and endocrine changes in male tree shrews. Pharmacol Biochem Behav 2000, 65: 539–546.CrossRefPubMedGoogle Scholar
  39. 39.
    Ohl F, Oitzl MS, Fuchs E. Assessing cognitive functions in tree shrews: visuo-spatial and spatial learning in the home cage. J Neurosci Methods 1998, 81: 35–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Casagrande VA, Harting JK, Hall WC, Diamond IT, Martin GF. Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers. Science 1972, 177: 444–447.CrossRefPubMedGoogle Scholar
  41. 41.
    Day-Brown JD, Slusarczyk AS, Zhou N, Quiggins R, Petry HM, Bickford ME. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus. J Comp Neurol 2017, 525: 1403–1420.CrossRefPubMedGoogle Scholar
  42. 42.
    Familtsev D, Quiggins R, Masterson S, Dang W, Slusarczyk AS, Petry HM, et al. Ultrastructure of geniculocortical synaptic connections in the tree shrew striate cortex. J Comp Neurol 2016, 524: 1292–1306.CrossRefPubMedGoogle Scholar
  43. 43.
    Takahata T, Kaas JH. c-FOS expression in the visual system of tree shrews after monocular inactivation. J Comp Neurol 2017, 525: 151–165.CrossRefPubMedGoogle Scholar
  44. 44.
    De Luna P, Veit J, Rainer G. Basal forebrain activation enhances between-trial reliability of low-frequency local field potentials (LFP) and spiking activity in tree shrew primary visual cortex (V1). Brain Struct Funct 2017, 222: 4239–4252.CrossRefPubMedGoogle Scholar
  45. 45.
    Dai JK, Wang SX, Shan D, Niu HC, Lei H. A diffusion tensor imaging atlas of white matter in tree shrew. Brain Struct Funct 2017, 222: 1733–1751.CrossRefPubMedGoogle Scholar
  46. 46.
    Magarinos AM, McEwen BS, Flugge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 1996, 16: 3534–3540.CrossRefPubMedGoogle Scholar
  47. 47.
    Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011, 5: 53.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McCollum LA, Roberts RC. Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 2014, 271: 23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Watson C, Lind CR, Thomas MG. The anatomy of the caudal zona incerta in rodents and primates. J Anat 2014, 224: 95–107.CrossRefPubMedGoogle Scholar
  50. 50.
    Hardman CD, Ashwell KWS. Stereotaxic and Chemoarchitectural Atlas of the Brain of the Common Marmoset (Callithrix jacchus). First Edition. Florida: CRC Press, 2012.CrossRefGoogle Scholar
  51. 51.
    Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 1980, 3: 129–149.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhou JN, Ni RJ. The Tree Shrew (Tupaia belangeri chinensis) Brain in Stereotaxic Coordinates. First Edition. Beijing: Science Press and Springer, 2016.CrossRefGoogle Scholar
  53. 53.
    Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates, 3rd Edition. 3rd Edition. New York: Academic Press, 2007.Google Scholar
  54. 54.
    Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 6th Edition. New York: Academic Press, 2007.Google Scholar
  55. 55.
    Burke MW, Zangenehpour S, Boire D, Ptito M. Dissecting the non-human primate brain in stereotaxic space. J Vis Exp 2009: 1–5.Google Scholar
  56. 56.
    Yang Z, You Y, Levison SW. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol 2008, 511: 19–33.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ni RJ, Shu YM, Wang J, Yin JC, Xu L, Zhou JN. Distribution of vasopressin, oxytocin and vasoactive intestinal polypeptide in the hypothalamus and extrahypothalamic regions of tree shrews. Neuroscience 2014, 265: 124–136.CrossRefPubMedGoogle Scholar
  58. 58.
    Kamisaka Y, Ronnestad I. Reconstructed 3D models of digestive organs of developing Atlantic cod (Gadus morhua) larvae. Mar Biol 2011, 158: 233–243.CrossRefPubMedGoogle Scholar
  59. 59.
    Grishagin IV. Automatic cell counting with ImageJ. Anal Biochem 2015, 473: 63–65.CrossRefPubMedGoogle Scholar
  60. 60.
    Lanciego JL, Vazquez A. The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 2012, 217: 613–666.CrossRefPubMedGoogle Scholar
  61. 61.
    Cho ZH. 7.0 Tesla MRI brain atlas: in vivo atlas with cryomacrotome correlation. New York: Springer, 2015.Google Scholar
  62. 62.
    Todtenkopf MS, Stellar JR, Williams EA, Zahm DS. Differential distribution of parvalbumin immunoreactive neurons in the striatum of cocaine sensitized rats. Neuroscience 2004, 127: 35–42.CrossRefPubMedGoogle Scholar
  63. 63.
    Saunders A, Huang KW, Sabatini BL. Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS One 2016, 11: e0149798.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wu Y, Parent A. Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 2000, 863: 182–191.CrossRefPubMedGoogle Scholar
  65. 65.
    Ammassari-Teule M, Sgobio C, Biamonte F, Marrone C, Mercuri NB, Keller F. Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors. Psychopharmacology (Berl) 2009, 204: 511–521.CrossRefGoogle Scholar
  66. 66.
    Xu M, Li L, Pittenger C. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming. Neuroscience 2016, 324: 321–329.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Marrone MC, Marinelli S, Biamonte F, Keller F, Sgobio CA, Ammassari-Teule M, et al. Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J Neurosci 2006, 24: 2061–2070.CrossRefPubMedGoogle Scholar
  68. 68.
    Hamann M, Richter A, Meillasson FV, Nitsch C, Ebert U. Age-related changes in parvalbumin-positive interneurons in the striatum, but not in the sensorimotor cortex in dystonic brains of the dt(sz) mutant hamster. Brain Res 2007, 1150: 190–199.CrossRefPubMedGoogle Scholar
  69. 69.
    Choi JH, Lee CH, Yoo KY, Hwang IK, Lee IS, Lee YL, et al. Age-related changes in calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the dog main olfactory bulb. Cell Mol Neurobiol 2010, 30: 1–12.CrossRefPubMedGoogle Scholar
  70. 70.
    Krzywkowski P, De Bilbao F, Senut MC, Lamour Y. Age-related changes in parvalbumin- and GABA-immunoreactive cells in the rat septum. Neurobiol Aging 1995, 16: 29–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Bae EJ, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, et al. Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Neurochem Res 2015, 40: 864–872.CrossRefPubMedGoogle Scholar
  72. 72.
    Benhamou L, Cohen D. Electrophysiological characterization of entopeduncular nucleus neurons in anesthetized and freely moving rats. Front Syst Neurosci 2014, 8: 7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Miyamoto Y, Fukuda T. Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 2015, 94: 37–49.CrossRefPubMedGoogle Scholar
  74. 74.
    Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, et al. Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 2017, 94: 138–152 e135.Google Scholar
  75. 75.
    Zheng YT, Yao YG, Xu L. Basic Biology and Disease Models of Tree Shrews. Yunnan, China: Yunnan Science and Technology Press, 2014.Google Scholar
  76. 76.
    Hubrecht R, Kirkwood J. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (Eighth Edition). London: Universities Federation for Animal Welfare, 2010: 262–275.Google Scholar
  77. 77.
    Flaherty AW, Graybiel AM. Motor and somatosensory corticostriatal projection magnifications in the squirrel monkey. J Neurophysiol 1995, 74: 2638–2648.CrossRefPubMedGoogle Scholar
  78. 78.
    Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, et al. The mouse cortico-striatal projectome. Nat Neurosci 2016, 19: 1100–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 2016, 92: 202-213.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Masterson SP, Li J, Bickford ME. Synaptic organization of the tectorecipient zone of the rat lateral posterior nucleus. J Comp Neurol 2009, 515: 647–663.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med 2012, 2.Google Scholar
  82. 82.
    Tieu K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011, 1: a009316.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012, 279: 1156–1166.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rong-Jun Ni
    • 1
    • 2
    • 3
  • Zhao-Huan Huang
    • 2
  • Yu-Mian Shu
    • 4
  • Yu Wang
    • 2
  • Tao Li
    • 1
    • 3
  • Jiang-Ning Zhou
    • 2
    Email author
  1. 1.Psychiatric Laboratory and Mental Health CenterWest China Hospital of Sichuan UniversityChengduChina
  2. 2.Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Huaxi Brain Research CenterWest China Hospital of Sichuan UniversityChengduChina
  4. 4.School of Architecture and Civil EngineeringChengdu UniversityChengduChina

Personalised recommendations