Advertisement

Diffuse Intrinsic Pontine Gliomas Exhibit Cell Biological and Molecular Signatures of Fetal Hindbrain-Derived Neural Progenitor Cells

  • Yu Sun
  • Cheng Xu
  • Changcun Pan
  • Xin Chen
  • Yibo Geng
  • Yuliang Wu
  • Peng Zhang
  • Wenhao Wu
  • Yu Wang
  • Deling Li
  • Zhen Wu
  • Junting Zhang
  • Qiaoran Xi
  • Liwei ZhangEmail author
METHOD

Abstract

Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumor-related death among children. Until now, there is still a lack of effective therapy with prolonged overall survival for this disease. A typical strategy for preclinical cancer research is to find out the molecular differences between tumor tissue and para-tumor normal tissue, in order to identify potential therapeutic targets. Unfortunately, it is impossible to obtain normal tissue for DIPG because of the vital functions of the pons. Here we report the human fetal hindbrain-derived neural progenitor cells (pontine progenitor cells, PPCs) as normal control cells for DIPG. The PPCs not only harbored similar cell biological and molecular signatures as DIPG glioma stem cells, but also had the potential to be immortalized by the DIPG-specific mutation H3K27M in vitro. These findings provide researchers with a candidate normal control and a potential medicine carrier for preclinical research on DIPG.

Keywords

Diffuse intrinsic pontine glioma Neural progenitor cells Immortalization H3K27M Senescence 

Notes

Acknowledgements

This work was supported by Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201608) and the Beijing Municipal Natural Science Foundation (7161004).

Conflict of interest

All authors claim that there are no conflicts of interest.

References

  1. 1.
    Maria BL, Rehder K, Eskin TA, Hamed LM, Fennell EB, Quisling RG, et al. Brainstem glioma: I. Pathology, clinical features, and therapy. J Child Neurol 1993, 8: 112–128.CrossRefGoogle Scholar
  2. 2.
    Freeman CR, Perilongo G. Chemotherapy for brain stem gliomas. Childs Nerv Syst 1999, 15: 545–553.CrossRefGoogle Scholar
  3. 3.
    Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 2011, 108: 4453–4458.CrossRefGoogle Scholar
  4. 4.
    Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015, 29: 1203–1217.CrossRefGoogle Scholar
  5. 5.
    Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 2014, 346: 1529–1533.CrossRefGoogle Scholar
  6. 6.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009, 27: 275–280.CrossRefGoogle Scholar
  7. 7.
    Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478: 483–489.CrossRefGoogle Scholar
  8. 8.
    Tailor J, Kittappa R, Leto K, Gates M, Borel M, Paulsen O, et al. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci 2013, 33: 12407–12422.CrossRefGoogle Scholar
  9. 9.
    Xu C, Liu X, Geng Y, Bai Q, Pan C, Sun Y, et al. Patient-derived DIPG cells preserve stem-like characteristics and generate orthotopic tumors. Oncotarget 2017, 8: 76644–76655.Google Scholar
  10. 10.
    Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc 2007, 2: 1445–1457.CrossRefGoogle Scholar
  11. 11.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002, 39: 193–206.CrossRefGoogle Scholar
  12. 12.
    Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013, 24: 660–672.CrossRefGoogle Scholar
  13. 13.
    Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005, 6: 777–788.CrossRefGoogle Scholar
  14. 14.
    Li Z, Wang H, Eyler CE, Hjelmeland AB, Rich JN. Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem 2009, 284: 16705–16709.CrossRefGoogle Scholar
  15. 15.
    Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I, et al. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev 2014, 28: 1085–1100.CrossRefGoogle Scholar
  16. 16.
    Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, Debily MA, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015, 21: 555–559.CrossRefGoogle Scholar
  17. 17.
    Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 2006, 312: 2107–2120.CrossRefGoogle Scholar
  18. 18.
    Ryder EF, Snyder EY, Cepko CL. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol 1990, 21: 356–375.CrossRefGoogle Scholar
  19. 19.
    Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 2017, 23: 493–500.CrossRefGoogle Scholar
  20. 20.
    Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 2017, 32: 520–537 e525.Google Scholar
  21. 21.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255: 1707–1710.CrossRefGoogle Scholar
  22. 22.
    Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018, 360: 331–335.CrossRefGoogle Scholar
  23. 23.
    Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482: 226–231.CrossRefGoogle Scholar
  24. 24.
    Shi Y, Guryanova OA, Zhou W, Liu C, Huang Z, Fang X, et al. Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Sci Transl Med 2018, 10. pii: eaah6816.Google Scholar
  25. 25.
    Zeng Y, Shen Y, Hong L, Chen Y, Shi X, Zeng Q, et al. Effects of single and repeated exposure to a 50-Hz 2-mT electromagnetic field on primary cultured hippocampal neurons. Neurosci Bull 2017, 33: 299–306.CrossRefGoogle Scholar
  26. 26.
    Xu F, Zhu JH. Stem cells tropism for malignant gliomas. Neurosci Bull 2007, 23: 363–369.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS 2019

Authors and Affiliations

  • Yu Sun
    • 1
  • Cheng Xu
    • 1
  • Changcun Pan
    • 1
  • Xin Chen
    • 1
  • Yibo Geng
    • 1
  • Yuliang Wu
    • 1
  • Peng Zhang
    • 1
  • Wenhao Wu
    • 1
  • Yu Wang
    • 1
  • Deling Li
    • 1
  • Zhen Wu
    • 1
  • Junting Zhang
    • 1
  • Qiaoran Xi
    • 2
  • Liwei Zhang
    • 1
    Email author
  1. 1.Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
  2. 2.Ministry of Education Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations