Advertisement

Neuroscience Bulletin

, Volume 33, Issue 5, pp 535–542 | Cite as

Can Biomarkers Help the Early Diagnosis of Parkinson’s Disease?

  • Weidong LeEmail author
  • Jie Dong
  • Song Li
  • Amos D. KorczynEmail author
Review

Abstract

Parkinson’s disease (PD) is a complex neurodegenerative disease with progressive loss of dopamine neurons. PD patients usually manifest a series of motor and non-motor symptoms. In order to provide better early diagnosis and subsequent disease-modifying therapies for PD patients, there is an urgent need to identify sensitive and specific biomarkers. Biomarkers can be divided into four categories: clinical, imaging, biochemical, and genetic. Ideal biomarkers not only improve our understanding of PD pathogenesis and progression, but also provide benefits for early risk evaluation and clinical diagnosis of PD. Although many efforts have been made and several biomarkers have been extensively investigated, few if any have been found useful for early diagnosis. Here, we summarize recent developments in the discovered biomarkers of PD and discuss their merits and limitations for the early diagnosis of PD.

Keywords

Parkinson’s disease Biomarker Early diagnosis Molecular imaging Biochemical markers 

Notes

Acknowledgements

This review was supported by grants from the National Natural Science Foundation of China (81430021 and 81370470), the Program for Liaoning Provincial Innovative Research Team in Universities (LT2015009), the Liaoning Provincial Science and Technology Project (2015225008), and a Research Project of Dalian Science and Technology (2014E14SF175) of Liaoning Province, China.

References

  1. 1.
    Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013, 136: 2419–2431.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015, 30: 1600–1611.CrossRefPubMedGoogle Scholar
  3. 3.
    Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, et al. Time to redefine PD? Introductory statement of the MDS task force on the definition of Parkinson’s disease. Mov Disord 2014, 29: 454–462.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Borroni B, Malinverno M, Gardoni F, Alberici A, Parnetti L, Premi E, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008, 71: 1796–1803.CrossRefPubMedGoogle Scholar
  5. 5.
    Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol 2011, 68: 22–30.PubMedGoogle Scholar
  6. 6.
    Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res 2004, 14: 347–358.CrossRefPubMedGoogle Scholar
  7. 7.
    Korczyn AD, Hassin-Baer S. Can the disease course in Parkinson’s disease be slowed? BMC Med 2015, 13: 295.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mandel SA, Morelli M, Halperin I, Korczyn AD. Biomarkers for prediction and targeted prevention of Alzheimer’s and Parkinson’s diseases: evaluation of drug clinical efficacy. EPMA J 2010, 1: 273–292.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Berg D, Godau J, Seppi K, Behnke S, Liepelt-Scarfone I, Lerche S, et al. The PRIPS study: screening battery for subjects at risk for Parkinson’s disease. Eur J Neurol 2013, 20: 102–108.CrossRefPubMedGoogle Scholar
  10. 10.
    Gaenslen A, Wurster I, Brockmann K, Huber H, Godau J, Faust B, et al. Prodromal features for Parkinson’s disease - baseline data from the TREND study. Eur J Neurol 2014, 21: 766–772.CrossRefPubMedGoogle Scholar
  11. 11.
    Jennings D, Siderowf A, Stern M, Seibyl J, Eberly S, Oakes D, et al. Imaging prodromal Parkinson disease: The Parkinson Associated Risk Syndrome Study. Neurology 2014, 83: 1739–1746.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kang JH, Mollenhauer B, Coffey CS, Toledo JB, Weintraub D, Galasko DR, et al. CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta Neuropathol 2016, 131: 935–949.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chahine LM, Xie SX, Simuni T, Tran B, Postuma R, Amara A, et al. Longitudinal changes in cognition in early Parkinson’s disease patients with REM sleep behavior disorder. Parkinsonism Relat Disord 2016, 27: 102–106.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Tanner C, Marek K, et al. How stable are Parkinson’s disease subtypes in de novo patients: Analysis of the PPMI cohort? Parkinsonism Relat Disord 2016, 28: 62–67.CrossRefPubMedGoogle Scholar
  15. 15.
    Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Knowles CH, Hardy J, et al. PREDICT-PD: Identifying risk of Parkinson’s disease in the community: methods and baseline results. J Neurol Neurosurg Psychiatry 2014, 85: 31–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Noyce AJ, R’Bibo L, Peress L, Bestwick JP, Adams-Carr KL, Mencacci NE, et al. PREDICT-PD: An online approach to prospectively identify risk indicators of Parkinson’s disease. Mov Disord 2017, 32: 219–226.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Iranzo A, Tolosa E, Gelpi E, Molinuevo JL, Valldeoriola F, Serradell M, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013, 12: 443–453.CrossRefPubMedGoogle Scholar
  18. 18.
    Postuma RB, Lang AE, Gagnon JF, Pelletier A, Montplaisir JY. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain 2012, 135: 1860–1870.CrossRefPubMedGoogle Scholar
  19. 19.
    Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 2015, 14: 57–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Goldman JG, Postuma R. Premotor and nonmotor features of Parkinsonʼs disease. Curr Opin Neurol 2014, 27: 434–441.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sixel-Döring F, Zimmermann J, Wegener A, Mollenhauer B, Trenkwalder C. The evolution of REM sleep behavior disorder in early Parkinson disease. Sleep 2016, 39: 1737–1742.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C. Rapid eye movement sleep behavioral events: a new marker for neurodegeneration in early Parkinson disease? Sleep 2014, 37: 431.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Siderowf A, Jennings D, Eberly S, Oakes D, Hawkins KA, Ascherio A, et al. Impaired olfaction and other prodromal features in the Parkinson at-risk syndrome study. Mov Disord 2012, 27: 406–412.CrossRefPubMedGoogle Scholar
  24. 24.
    Xiao Q, Chen S, Le W. Hyposmia: a possible biomarker of Parkinson’s disease. Neurosci Bull 2014, 30: 134–140.CrossRefPubMedGoogle Scholar
  25. 25.
    Postuma RB, Berg D. Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 2016, 12: 622–634.CrossRefPubMedGoogle Scholar
  26. 26.
    Postuma RB, Gagnon JF, Bertrand JA, Génier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology 2015, 84: 1104–1113.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ponsen MM, Stoffers D, Twisk JWR, Wolters EC, Berendse HW. Hyposmia and executive dysfunction as predictors of future Parkinson’s disease: a prospective study. Mov Disord 2009, 24: 1060–1065.CrossRefPubMedGoogle Scholar
  28. 28.
    Korczyn, AD. Autonomic nervous system disturbances in Parkinson’s disease. Adv Neurol 1990, 53: 463–468.PubMedGoogle Scholar
  29. 29.
    Svensson E, Henderson VW, Borghammer P, Horváth-Puhó E, Sørensen HT. Constipation and risk of Parkinson’s disease: A Danish population-based cohort study. Parkinsonism Relat Disord 2016, 28: 18–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Treves, TA, Chandra V, Korczyn AD. Parkinson’s and Alzheimer’s diseases: epidemiological comparison. 2. Persons at risk. Neuroepidemiology 1993, 12: 345–349.CrossRefPubMedGoogle Scholar
  31. 31.
    Gustafsson H, Nordström A, Nordström P. Depression and subsequent risk of Parkinson disease: A nationwide cohort study. Neurology 2015, 84: 2422–2429.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI Res 2015, 5: 12.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ravina B, Marek K, Eberly S, Oakes D, Kurlan R, Ascherio A, et al. Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Mov Disord 2012, 27: 1392–1397.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Iranzo A, Lomeña F, Stockner H, Valldeoriola F, Vilaseca I, Salamero M, et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study. Lancet Neurol 2010, 9: 1070–1077.CrossRefPubMedGoogle Scholar
  35. 35.
    Taki J, Yoshita M, Yamada M, Tonami N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: It can be a specific marker for Lewy body disease. Ann Nucl Med 2004, 18: 453–461.CrossRefPubMedGoogle Scholar
  36. 36.
    Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord 2010, 16: 252–255.CrossRefPubMedGoogle Scholar
  37. 37.
    Miyamoto T, Miyamoto M, Inoue Y, Usui Y, Suzuki K, Hirata K. Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology 2006, 67: 2236–2238.CrossRefPubMedGoogle Scholar
  38. 38.
    Lebasnier A, Lamotte G, Manrique A, Peyronnet D, Bouvard G, Defer G, et al. Potential diagnostic value of regional myocardial adrenergic imaging using (123)I-MIBG SPECT to identify patients with Lewy body diseases. Eur J Nucl Med Mol Imaging 2015, 42: 1043–1051.CrossRefPubMedGoogle Scholar
  39. 39.
    Ellmore TM, Castriotta RJ, Hendley KL, Aalbers BM, Furr-Stimming E, Hood AJ, et al. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder. Sleep 2013, 36: 1885–1892.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Scherfler C, Frauscher B, Schocke M, Iranzo A, Gschliesser V, Seppi K, et al. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study. Ann Neurol 2011, 69: 400–407.CrossRefPubMedGoogle Scholar
  41. 41.
    He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015, 36: 4407–4420.CrossRefPubMedGoogle Scholar
  42. 42.
    Langley J, Huddleston DE, Merritt M, Chen X, McMurray R, Silver M, et al. Diffusion tensor imaging of the substantia nigra in Parkinson’s disease revisited. Hum Brain Mapp 2016, 37: 2547–2556.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP. Parkinson’s disease-related increase of T2*-weighted hypointensity in substantia nigra pars compacta. Mov Disord 2017, 32: 441–449.CrossRefPubMedGoogle Scholar
  44. 44.
    Jesus-Ribeiro J, Freire A, Sargento-Freitas J, Sousa M, Silva F, Moreira F, et al. Transcranial sonography and DaTSCAN in early stage Parkinson’s disease and essential tremor. Eur Neurol 2016, 76: 252–255.CrossRefPubMedGoogle Scholar
  45. 45.
    Iranzo A, Stockner H, Serradell M, Seppi K, Valldeoriola F, Frauscher B, et al. Five-year follow-up of substantia nigra echogenicity in idiopathic REM sleep behavior disorder. Mov Disord 2014, 29: 1774–1780.CrossRefPubMedGoogle Scholar
  46. 46.
    Mollenhauer B. Quantification of α-synuclein in cerebrospinal fluid: how ideal is this biomarker for Parkinson’s disease? Parkinsonism Relat Disord 2014, 20: S76–S79.CrossRefPubMedGoogle Scholar
  47. 47.
    Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 2014, 128: 639–650.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Locascio JJ, Eberly S, Liao Z, Liu G, Hoesing AN, Duong K, et al. Association between α-synuclein blood transcripts and early, neuroimaging-supported Parkinson’s disease. Brain 2015, 138: 2659–2671.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133: 713–726.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012, 72: 893–901.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB. Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 2005, 58: 797–800.CrossRefPubMedGoogle Scholar
  52. 52.
    Swanson CR, Berlyand Y, Xie SX, Alcalay RN, Chahine LM, Chen-Plotkin AS. Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson’s disease patients. Mov Disord 2015, 30: 1648–56.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Qiang JK, Wong YC, Siderowf A, Hurtig HI, Xie SX, Lee VM, et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 2013, 74: 119–127.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Santiago JA, Littlefield AM, Potashkin JA. Integrative transcriptomic meta-analysis of Parkinson’s disease and depression identifies NAMPT as a potential blood biomarker for de novo Parkinson’s disease. Sci Rep 2016, 6: 34579.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Malek N, Swallow D, Grosset KA, Anichtchik O, Spillantini M, Grosset DG. Alpha-synuclein in peripheral tissues and body fluids as a biomarker for Parkinson’s disease - a systematic review. Acta Neurol Scand 2014, 130: 59–72.CrossRefPubMedGoogle Scholar
  56. 56.
    Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol 2016, 79: 940–949.CrossRefPubMedGoogle Scholar
  57. 57.
    Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 2014, 127: 235–241.CrossRefPubMedGoogle Scholar
  58. 58.
    Woulfe JM, Gray MT, Munoz G. Colonic mucosal α-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology 2015, 85: 834.CrossRefPubMedGoogle Scholar
  59. 59.
    Chung SJ, Kim J, Lee HJ, Ryu H-S, Kim K, Lee JH, et al. Alpha-synuclein in gastric and colonic mucosa in Parkinson’s disease: Limited role as a biomarker. Mov Disord 2016, 31: 241–249.CrossRefPubMedGoogle Scholar
  60. 60.
    Donadio V, Incensi A, Leta V, Giannoccaro MP, Scaglione C, Martinelli P, et al. Skin nerve -synuclein deposits: A biomarker for idiopathic Parkinson disease. Neurology 2014, 82: 1362–1369.CrossRefPubMedGoogle Scholar
  61. 61.
    Doppler K, Jentschke HM, Schulmeyer L, Vadasz D, Janzen A, Luster M, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol 2017, 133: 535–545.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vilas D, Iranzo A, Tolosa E, Aldecoa I, Berenguer J, Vilaseca I, et al. Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol 2016, 15: 708–718.CrossRefPubMedGoogle Scholar
  63. 63.
    Adler CH, Dugger BN, Hentz JG, Hinni ML, Lott DG, Driver-Dunckley E, et al. Peripheral synucleinopathy in early Parkinson’s disease: submandibular gland needle biopsy findings. Mov Disord 2016, 31: 250–256.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011, 108: 3047–3052.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015, 30: 350–358.CrossRefPubMedGoogle Scholar
  66. 66.
    Fernández-Santiago R, Iranzo A, Gaig C, Serradell M, Fernández M, Tolosa E, et al. MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann Neurol 2015, 77: 895–901.CrossRefPubMedGoogle Scholar
  67. 67.
    Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 2014, 8: 156.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Teixeira dos Santos MC, Bell R, da Costa AN. Recent developments in circulating biomarkers in Parkinson’s disease: the potential use of miRNAs in a clinical setting. Bioanalysis 2016, 8: 2497–518.CrossRefPubMedGoogle Scholar
  69. 69.
    Thacker EL, Ascherio A. Familial aggregation of Parkinson’s disease: a meta-analysis. Mov Disord 2008, 23: 1174–1183.CrossRefPubMedGoogle Scholar
  70. 70.
    Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015, 31: 140–149.CrossRefPubMedGoogle Scholar
  71. 71.
    Le W, Chen S, Jankovic J. Etiopathogenesis of Parkinson disease: A New Beginning? Neuroscientist 2009, 15: 28–35.CrossRefGoogle Scholar
  72. 72.
    Beavan M, McNeill A, Proukakis C, Hughes DA, Mehta A, Schapira AH. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol 2015, 72: 201–208.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S, et al. The risk of Parkinson’s disease in type 1 Gaucher disease. J Inherit Metab Dis 2010, 33: 167–173.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    McNeill A, Duran R, Hughes DA, Mehta A, Schapira AH. A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. J Neurol Neurosurg Psychiatry 2012, 83: 853–854.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bergareche A, Rodríguez-Oroz MC, Estanga A, Gorostidi A, López de Munain A, Castillo-Triviño T, et al. DAT imaging and clinical biomarkers in relatives at genetic risk for LRRK2 R1441G Parkinson’s disease. Mov Disord 2016, 31: 335–43.CrossRefPubMedGoogle Scholar
  76. 76.
    Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, et al. Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 2008, 273: 29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Guo Y, Le WD, Jankovic J, Yang HR, Xu HB, Xie WJ, et al. Systematic genetic analysis of the PITX3 gene in patients with Parkinson disease. Mov Disord 2011, 26: 1729–1732.CrossRefPubMedGoogle Scholar
  78. 78.
    Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 2012, 124: 325–338.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014, 46: 989–993.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nalls MA, McLean CY, Rick J, Eberly S, Hutten SJ, Gwinn K, et al. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol 2015, 14: 1002–1009.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mahlknecht P, Gasperi A, Willeit P, Kiechl S, Stockner H, Willeit J, et al. Prodromal Parkinson’s disease as defined per MDS research criteria in the general elderly community. Mov Disord 2016, 31: 1405–1408.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
  2. 2.Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
  3. 3.Collaborative Innovation Center for Brain Science, The First Affiliated HospitalDalian Medical UniversityDalianChina
  4. 4.Department of Neurology, Sackler School of MedicineTel Aviv UniversityRamat-AvivIsrael

Personalised recommendations