Neuroscience Bulletin

, Volume 33, Issue 6, pp 737–746 | Cite as

Drosophila Studies on Autism Spectrum Disorders

  • Yao Tian
  • Zi Chao Zhang
  • Junhai HanEmail author


In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.


Autism spectrum disorders Drosophila Chromatin remodeling Synaptic scaffolding Synaptic transmission 



We apologize to those whose works have contributed greatly to our knowledge but were not sufficiently reviewed or were not cited owing to space limitations. We thank members of the Han laboratory for proof-reading. This review was supported by the National Natural Science Foundation of China (31471031, 31400927, and 31671045), and the Natural Science Foundation of Jiangsu Province, China (BK20140623).


  1. 1.
    Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014, 63: 1–21.Google Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. DSM-5 5th ed. Arlington, Viginia: American Psychiatric Association, 2013.CrossRefGoogle Scholar
  3. 3.
    Schreck KA, Mulick JA. Parental report of sleep problems in children with autism. J Autism Dev Disord 2000, 30: 127–135.PubMedCrossRefGoogle Scholar
  4. 4.
    Honomichl RD, Goodlin-Jones BL, Burnham M, Gaylor E, Anders TF. Sleep patterns of children with pervasive developmental disorders. J Autism Dev Disord 2002, 32: 553–561.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Malow BA, Marzec ML, McGrew SG, Wang L, Henderson LM, Stone WL. Characterizing sleep in children with autism spectrum disorders: a multidimensional approach. Sleep 2006, 29: 1563–1571.PubMedCrossRefGoogle Scholar
  6. 6.
    Souders MC, Mason TB, Valladares O, Bucan M, Levy SE, Mandell DS, et al. Sleep behaviors and sleep quality in children with autism spectrum disorders. Sleep 2009, 32: 1566–1578.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Geschwind DH. Advances in autism. Ann Rev Med 2009, 60: 367–380.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016, 22: 345–361.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nature Rev Neurosci 2010, 11: 490–502.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    McCammon JM, Sive H. Addressing the genetics of human mental health disorders in model organisms. Ann Rev Genomics Hum Genet 2015, 16: 173–197.CrossRefGoogle Scholar
  11. 11.
    Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 1971, 68: 2112–2116.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001, 11: 1114–1125.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science 2000, 287: 2185–2195.PubMedCrossRefGoogle Scholar
  14. 14.
    Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014, 511: 344–347.PubMedCrossRefGoogle Scholar
  15. 15.
    Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012, 74: 285–299.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2011, 506: 179–184.CrossRefGoogle Scholar
  17. 17.
    Silvia DR, Xin H, Goldberg AP, Poultney CS, Kaitlin S, A Erucment Cicek, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515: 209–215.CrossRefGoogle Scholar
  18. 18.
    Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet 2016, 98: 541–552.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 2002, 296: 1132–1136.PubMedCrossRefGoogle Scholar
  20. 20.
    Mis J, Ner SS, Grigliatti TA. Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol Genet Genomics 2006, 275: 513–526.PubMedCrossRefGoogle Scholar
  21. 21.
    Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002, 16: 1779–1791.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kramer JM, Kochinke K, Oortveld MA, Marks H, Kramer D, de Jong EK, et al. Epigenetic regulation of learning and memory by Drosophila EHMT/G9a. PLoS Biol 2011, 9: e1000569.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R, et al. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatr 2008, 13: 187–196.CrossRefGoogle Scholar
  24. 24.
    Morris JA, Kandpal G, Ma L, Austin CP. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003, 12: 1591–1608.PubMedCrossRefGoogle Scholar
  25. 25.
    Sawamura N, Ando T, Maruyama Y, Fujimuro M, Mochizuki H, Honjo K, et al. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol Psychiatr 2008, 13: 1138–1148.CrossRefGoogle Scholar
  26. 26.
    Guven-Ozkan T, Busto GU, Schutte SS, Cervantes-Sandoval I, O’Dowd DK, Davis RL. MiR-980 is a memory suppressor microRNA that regulates the autism-susceptibility gene A2bp1. Cell Rep 2016, 14: 1698–1709.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009, 10: 307.PubMedCrossRefGoogle Scholar
  28. 28.
    Iii RJK, Bear MF. The autistic neuron: troubled translation? Cell 2008, 135: 401–406.CrossRefGoogle Scholar
  29. 29.
    Ashley CT, Jr., Wilkinson KD, Reines D, Warren ST. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 1993, 262: 563–566.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001, 107: 477–487.PubMedCrossRefGoogle Scholar
  31. 31.
    Ascano M, Jr., Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012, 492: 382–386.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Ann Rev Neurosci 2002, 25: 315–338.PubMedCrossRefGoogle Scholar
  33. 33.
    Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile-X gene, FMR1, has characteristics of an rna-binding protein. Cell 1993, 74: 291–298.PubMedCrossRefGoogle Scholar
  34. 34.
    Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146: 247–261.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991, 66: 817–822.PubMedCrossRefGoogle Scholar
  36. 36.
    Kanellopoulos AK, Semelidou O, Kotini AG, Anezaki M, Skoulakis EM. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J Neurosci 2012, 32: 13111–13124.PubMedCrossRefGoogle Scholar
  37. 37.
    Wan L, Dockendorff TC, Jongens TA, Dreyfuss G. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 2000, 20: 8536–8547.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schwarz TL. Transmitter release at the neuromuscular junction. Int Rev Neurobiol 2006, 75: 105–144.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 2001, 107: 591–603.PubMedCrossRefGoogle Scholar
  40. 40.
    Pan L, Zhang YQ, Woodruff E, Broadie K. The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 2004, 14: 1863–1870.PubMedCrossRefGoogle Scholar
  41. 41.
    Gatto CL, Broadie K. Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 2008, 135: 2637–2648.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003, 130: 5543–5552.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu XL, Li Y, Wang F, Gao FB. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J Neurosci 2008, 28: 11883–11889.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dockendorff TC, Su HS, McBride SM, Yang Z, Choi CH, Siwicki KK, et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 2002, 34: 973–984.PubMedCrossRefGoogle Scholar
  45. 45.
    Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, et al. Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 2002, 34: 961–972.PubMedCrossRefGoogle Scholar
  46. 46.
    Tessier CR, Broadie K. Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 2008, 135: 1547–1557.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Michel CI, Kraft R, Restifo LL. Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci 2004, 24: 5798–5809.PubMedCrossRefGoogle Scholar
  48. 48.
    Lu R, Wang H, Liang Z, Ku L, O’Donnell W T, Li W, et al. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci U S A 2004, 101: 15201–15206.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leyssen M, Jackson FR, et al. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 2005, 15: 1156–1163.PubMedCrossRefGoogle Scholar
  50. 50.
    Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 2011, 14: 1517–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006, 49: 517–531.PubMedCrossRefGoogle Scholar
  52. 52.
    Friedman SH, Dani N, Rushton E, Broadie K. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila. Dis Model Mech 2013, 6: 1400–1413.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kashima R, Roy S, Ascano M, Martinez-Cerdeno V, Ariza-Torres J, Kim S, et al. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome. Sci Signal 2016, 9: ra58.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wan D, Zhang ZC, Zhang X, Li Q, Han J. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs. Hum Mol Genet 2015, 24: 4599–4614.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang XY, Qi J, Shen YQ, Liu X, Liu A, Zhou Z, et al. Mutations of PQBP1 in Renpenning syndrome promote ubiquitin-mediated degradation of FMRP and cause synaptic dysfunction. Hum Mol Genet 2017 (in press).Google Scholar
  56. 56.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012, 149: 274–293.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bateman JM, McNeill H. Insulin/IGF signalling in neurogenesis. Cell Mol Life Sci 2006, 63: 1701–1705.PubMedCrossRefGoogle Scholar
  58. 58.
    Fishwick KJ, Li RA, Halley P, Deng P, Storey KG. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 2010, 338: 215–225.PubMedCrossRefGoogle Scholar
  59. 59.
    Orlova KA, Crino PB. The tuberous sclerosis complex. Springer, Vienna, 2010.Google Scholar
  60. 60.
    Avet-Rochex A, Carvajal N, Christoforou CP, Yeung K, Maierbrugger KT, Hobbs C, et al. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control. PLoS Genet 2014, 10: e1004624.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bateman JM. Mechanistic insights into the role of mTOR signaling in neuronal differentiation. Neurogenesis (Austin, TX) 2015, 2: e1058684.CrossRefGoogle Scholar
  62. 62.
    Natarajan R, Trivedi-Vyas D, Wairkar YP. Tuberous sclerosis complex regulates Drosophila neuromuscular junction growth via the TORC2/Akt pathway. Hum Mol Genet 2013, 22: 2010–2023.PubMedCrossRefGoogle Scholar
  63. 63.
    Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH, et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatr 2013, 18: 1090–1095.CrossRefGoogle Scholar
  64. 64.
    Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 2008, 17: 111–118.PubMedCrossRefGoogle Scholar
  65. 65.
    Li W, Yao A, Zhi H, Kaur K, Zhu YC, Jia M, et al. Angelman syndrome protein Ube3a regulates synaptic growth and endocytosis by inhibiting BMP signaling in drosophila. PLoS Genet 2016, 12: e1006062.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Valdez C, Scroggs R, Chassen R, Reiter LT. Variation in Dube3a expression affects neurotransmission at the Drosophila neuromuscular junction. Biol Open 2015, 4: 776–782.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lu Y, Wang F, Li Y, Ferris J, Lee JA, Gao FB. The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 2009, 18: 454–462.PubMedCrossRefGoogle Scholar
  68. 68.
    Chakraborty M, Paul BK, Nayak T, Das A, Jana NR, Bhutani S. The E3 ligase ube3a is required for learning in Drosophila melanogaster. Biochem Biophys Res Commun 2015, 462: 71–77.PubMedCrossRefGoogle Scholar
  69. 69.
    Reiter LT, Seagroves TN, Bowers M, Bier E. Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum Mol Genet 2006, 15: 2825–2835.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, et al. Drosophila ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis 2011, 41: 669–677.PubMedCrossRefGoogle Scholar
  71. 71.
    Tauber JM, Vanlandingham PA, Zhang B. Elevated levels of the vesicular monoamine transporter and a novel repetitive behavior in the Drosophila model of fragile X syndrome. PLoS One 2011, 6: e27100.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron 2000, 26: 313–329.PubMedCrossRefGoogle Scholar
  73. 73.
    Collins CA, Wairkar YP, Johnson SL, DiAntonio A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 2006, 51: 57–69.PubMedCrossRefGoogle Scholar
  74. 74.
    Tian X, Li J, Valakh V, DiAntonio A, Wu C. Drosophila Rae1 controls the abundance of the ubiquitin ligase Highwire in post-mitotic neurons. Nat Neurosci 2011, 14: 1267–1275.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chen YC, Lin YQ, Banerjee S, Venken K, Li J, Ismat A, et al. Drosophila neuroligin 2 is required presynaptically and postsynaptically for proper synaptic differentiation and synaptic transmission. J Neurosci 2015, 32: 16018–16030.CrossRefGoogle Scholar
  76. 76.
    Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W. Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 2007, 581: 2509–2516.PubMedCrossRefGoogle Scholar
  77. 77.
    Li J, Ashley J, Budnik V, Bhat MA. Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 2007, 55: 741–755.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sun MK, Xing GL, Yuan LD, Gan GM, Knight D, With SI, et al. Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction. J Neurosci 2011, 31: 687–699.PubMedCrossRefGoogle Scholar
  79. 79.
    Xing G, Gan G, Chen D, Sun M, Yi J, Lv H, et al. Drosophila neuroligin3 regulates neuromuscular junction development and synaptic differentiation. J Biol Chem 2014, 289: 31867–31877.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Li Y, Zhou ZK, Zhang XW, Tong HW, Li PP, Zhang ZC, et al. Drosophila neuroligin 4 regulates sleep through modulating GABA transmission. J Neurosci 2013, 33: 15545–15554.PubMedCrossRefGoogle Scholar
  81. 81.
    Tong H, Li Q, Zhang ZC, Li Y, Han J. Neurexin regulates nighttime sleep by modulating synaptic transmission. Sci Rep 2016, 6: 38246.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Larkin A, Chen MY, Kirszenblat L, Reinhard J, Swinderen BV, Claudianos C. Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster. Eur J Neurosci 2015, 42: 2455–2466.PubMedCrossRefGoogle Scholar
  83. 83.
    Li T, Tian Y, Li Q, Chen H, Lv H, Xie W, et al. The neurexin/N-ethylmaleimide-sensitive factor (NSF) interaction regulates short term synaptic depression. J Biol Chem 2015, 290: 17656–17667.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Liu L, Tian Y, Zhang XY, Zhang X, Li T, Xie W, et al. Neurexin restricts axonal branching in columns by promoting ephrin clustering. Dev Cell 2017, 41: 94–106 e104.Google Scholar
  85. 85.
    Poliak S. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 2000, 24: 1037–1047.CrossRefGoogle Scholar
  86. 86.
    Sun MK, Liu LJ, Zeng XK, Xu M, Liu L, Fang M, et al. Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci Res 2009, 64: 362–371.PubMedCrossRefGoogle Scholar
  87. 87.
    Grice SJ, Liu JL, Webber C. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism. PLoS Genet 2015, 11: e1004998.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Howlett E, Lin CJ, Lavery W, Stern M. A PI3-Kinase–mediated negative feedback regulates neuronal excitability. PLoS Genet 2008, 4: 212–220.CrossRefGoogle Scholar
  89. 89.
    McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 2005, 45: 753–764.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, et al. Genetic and expression analyses reveal elevated expression of syntaxin 1A (STX1A) in high functioning autism. Int J Neuropsychopharmacol 2008, 11: 1073–1084.PubMedCrossRefGoogle Scholar
  91. 91.
    Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatr 2013, 18: 1315–1323.CrossRefGoogle Scholar
  92. 92.
    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515: 216–221.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, 485: 242–245.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cartier E, Hamilton PJ, Belovich AN, Shekar A, Campbell NG, Saunders C, et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2015, 2: 135–146.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gauthier M. State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv Exp Med Biol 2010, 683: 97–115.PubMedCrossRefGoogle Scholar
  96. 96.
    Valles AS, Barrantes FJ. Chaperoning alpha 7 neuronal nicotinic acetylcholine receptors. Biochim Biophys Acta 2012, 1818: 718–729.PubMedCrossRefGoogle Scholar
  97. 97.
    Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ. The nicotinic acetylcholine receptor Dα7 is required for an escape behavior in Drosophila. PLoS Biol 2006, 4: e63.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hosie AM, Aronstein K, Sattelle DB. Molecular biology of insect neuronal GABA receptors. Trends Neurosci 1997, 20: 578–583.PubMedCrossRefGoogle Scholar
  99. 99.
    D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 2006, 1121: 238–245.PubMedCrossRefGoogle Scholar
  100. 100.
    Gatto CL, Pereira D, Broadie K. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model. Neurobiol Dis 2014, 65: 142–159.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM. Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 2000, 150: 589–600.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012, 338: 1619–1622.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kinstrie R, Lochhead PA, Sibbet G, Morrice N, Cleghon V. dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX. Biochem J 2006, 398: 45–54.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Parrish JZ, Kim MD, Jan LY, Jan YN. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev 2006, 20: 820–835.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chen CK, Bregere C, Paluch J, Lu JF, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun 2014, 5: 4246.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Kurshan PT, Oztan A, Schwarz TL. Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nat Neurosci 2009, 12: 1415–1423.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang TT, Jones RT, Whippen JM, Davis GW. α2δ-3 is required for rapid transsynaptic homeostatic signaling. Cell Rep 2016, 16: 2875–2888.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 2013, 4: 17–19.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kolevzon A, Cai G, Soorya L, Takahashi N, Grodberg D, Kajiwara Y, et al. Analysis of a purported SHANK3 mutation in a boy with autism: clinical impact of rare variant research in neurodevelopmental disabilities. Brain Res 2011, 1380: 98–105.PubMedCrossRefGoogle Scholar
  110. 110.
    Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999, 23: 569–582.PubMedCrossRefGoogle Scholar
  111. 111.
    Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 2004, 47: 724–733.PubMedCrossRefGoogle Scholar
  112. 112.
    Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci 2012, 32: 14966–14978.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Liebl FL, Featherstone DE. Identification and investigation of Drosophila postsynaptic density homologs. Bioinform Biol Insights 2007, 2: 375–387.Google Scholar
  114. 114.
    Harris KP, Akbergenova Y, Cho RW, Baas-Thomas MS, Littleton JT. Shank modulates postsynaptic Wnt signaling to regulate synaptic development. J Neurosci 2016, 36: 5820–5832.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, Swinnen L, et al. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 2003, 40: 352–356.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Savelyeva L, Sagulenko E, Schmitt JG, Schwab M. The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 2006, 118: 551–558.PubMedCrossRefGoogle Scholar
  117. 117.
    Wise A, Tenezaca L, Fernandez RW, Schatoff E, Flores J, Ueda A, et al. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J Neurogenet 2015, 29: 135–143.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yao A, Jin S, Li X, Liu Z, Ma X, Tang J, et al. Drosophila FMRP regulates microtubule network formation and axonal transport of mitochondria. Hum Mol Genet 2011, 20: 51–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Estes PS, O’Shea M, Clasen S, Zarnescu DC. Fragile X protein controls the efficacy of mRNA transport in Drosophila neurons. Mol Cell Neurosci 2008, 39: 170–179.PubMedCrossRefGoogle Scholar
  120. 120.
    Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H. Drosophila ankyrin 2 is required for synaptic stability. Neuron 2008, 58: 210–222.PubMedCrossRefGoogle Scholar
  121. 121.
    Pielage J, Cheng L, Fetter RD, Carlton PM, Sedat JW, Davis GW. A novel presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and trans-synaptic cell adhesion. Neuron 2008, 58: 195–209.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY, Besseling JA, et al. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum Mol Genet 2013, 22: 1960–1970.PubMedCrossRefGoogle Scholar
  123. 123.
    Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2008, 17: 628–638.PubMedCrossRefGoogle Scholar
  124. 124.
    Park SM, Littleton JT, Park HR, Lee JH. Drosophila homolog of human KIF22 at the autism-linked 16p11.2 loci influences synaptic connectivity at larval neuromuscular junctions. Exp Neurobiol 2016, 25: 33–39.Google Scholar
  125. 125.
    Burns JG, Mery F. Transgenerational memory effect of ageing in Drosophila. J Evol Biol 2010, 23: 678–686.PubMedCrossRefGoogle Scholar
  126. 126.
    Cock MD, Maas YGH, Bor MVD. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr 2012, 101: 811–818.PubMedCrossRefGoogle Scholar
  127. 127.
    Hirth F, Reichert H. Conserved genetic programs in insect and mammalian brain development. Bioessays 1999, 21: 677–684.PubMedCrossRefGoogle Scholar
  128. 128.
    O’Kane CJ. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci 2011, 7: 37–60.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina

Personalised recommendations