Advertisement

Neuroscience Bulletin

, Volume 33, Issue 3, pp 264–272 | Cite as

Gastrodin Attenuates Pentylenetetrazole-Induced Seizures by Modulating the Mitogen-Activated Protein Kinase-Associated Inflammatory Responses in Mice

  • Liming Chen
  • Xinan Liu
  • Hua WangEmail author
  • Min QuEmail author
Original Article

Abstract

Gastrodin, the major component isolated from the rhizome of the Chinese traditional medicinal herb Gastrodia elata (“Tianma”), has a long history in the treatment of epilepsy and other neurological disorders. However, the molecular mechanisms are not clear. Here, we found that gastrodin ameliorated pentylenetetrazole (PTZ)-induced epileptic seizures with improvement of the electroencephalographic pattern in mice. Further studies demonstrated that gastrodin decreased the levels of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α while increasing interleukin-10, an anti-inflammatory cytokine in the brain. Furthermore, gastrodin attenuated the PTZ-induced microglial activation along with inhibition of mitogen-activated protein kinases, cAMP response element binding protein, and NF-κB. Our data suggest that gastrodin attenuates seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses.

Keywords

Gastrodin Epilepsy IL-1β TNF-α IL-10 MAPK CREB NF-κB 

Supplementary material

12264_2016_84_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1031 kb)

References

  1. 1.
    Chang BS, Lowenstein DH. Epilepsy. N Engl J Med 2003, 349: 1257–1266.CrossRefPubMedGoogle Scholar
  2. 2.
    Realmuto S, Zummo L, Cerami C, Agro L, Dodich A, Canessa N, et al. Social cognition dysfunctions in patients with epilepsy: Evidence from patients with temporal lobe and idiopathic generalized epilepsies. Epilepsy Behav 2015, 47: 98–103.CrossRefPubMedGoogle Scholar
  3. 3.
    Austin JK, Dunn DW. Progressive behavioral changes in children with epilepsy. Prog Brain Res 2002, 135: 419–427.CrossRefPubMedGoogle Scholar
  4. 4.
    Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 2011, 52 Suppl 7: 2–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Ozuna J. Seizure disorders and epilepsy. Lippincotts Prim Care Pract 2000, 4: 608–618.PubMedGoogle Scholar
  6. 6.
    Amir M, Roziner I, Knoll A, Neufeld MY. Self-efficacy and social support as mediators in the relation between disease severity and quality of life in patients with epilepsy. Epilepsia 1999, 40: 216–224.CrossRefPubMedGoogle Scholar
  7. 7.
    Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G. IL-1beta, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 2015, 26: 22–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Xiao Z, Peng J, Yang L, Kong H, Yin F. Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 2015, 282: 110–117.CrossRefPubMedGoogle Scholar
  9. 9.
    De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12: 2623–2633.CrossRefPubMedGoogle Scholar
  10. 10.
    Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991, 176: 593–598.CrossRefPubMedGoogle Scholar
  11. 11.
    Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000, 47: 571–574.CrossRefPubMedGoogle Scholar
  12. 12.
    Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS. The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2009, 216: 258–271.CrossRefPubMedGoogle Scholar
  13. 13.
    Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, et al. Cytokines and epilepsy. Seizure 2011, 20: 249–256.CrossRefPubMedGoogle Scholar
  14. 14.
    Feng B, Chen Z. Generation of febrile seizures and subsequent epileptogenesis. Neurosci Bull 2016, 32: 481–492.CrossRefPubMedGoogle Scholar
  15. 15.
    Probert L, Akassoglou K, Kassiotis G, Pasparakis M, Alexopoulou L, Kollias G. TNF-alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 1997, 72: 137–141.CrossRefPubMedGoogle Scholar
  16. 16.
    Kauffman MA, Moron DG, Consalvo D, Bello R, Kochen S. Association study between interleukin 1 beta gene and epileptic disorders: a HuGe review and meta-analysis. Genet Med 2008, 10: 83–88.CrossRefPubMedGoogle Scholar
  17. 17.
    Ravizza T, Noe F, Zardoni D, Vaghi V, Sifringer M, Vezzani A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol Dis 2008, 31: 327–333.CrossRefPubMedGoogle Scholar
  18. 18.
    Rao RS, Prakash A, Medhi B. Role of different cytokines and seizure susceptibility: a new dimension towards epilepsy research. Indian J Exp Biol 2009, 47: 625–634.PubMedGoogle Scholar
  19. 19.
    Majoie HJ, Rijkers K, Berfelo MW, Hulsman JA, Myint A, Schwarz M, et al. Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 2011, 18: 52–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Choi J, Min HJ, Shin JS. Increased levels of HMGB1 and pro-inflammatory cytokines in children with febrile seizures. J Neuroinflammation 2011, 8: 135.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumar H, Kim IS, More SV, Kim BW, Bahk YY, Choi DK. Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid Based Complement Alternat Med 2013, 2013: 514095.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang XL, Xing GH, Hong B, Li XM, Zou Y, Zhang XJ, et al. Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 2014, 114: 77–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen PZ, Jiang HH, Wen B, Ren SC, Chen Y, Ji WG, et al. Gastrodin suppresses the amyloid beta-induced increase of spontaneous discharge in the entorhinal cortex of rats. Neural Plast 2014, 2014: 320937.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hu Y, Li C, Shen W. Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology 2014, 34: 370–377.PubMedGoogle Scholar
  25. 25.
    Qiu F, Liu TT, Qu ZW, Qiu CY, Yang Z, Hu WP. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons. Eur J Pharmacol 2014, 731: 50–57.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun W, Miao B, Wang XC, Duan JH, Ye X, Han WJ, et al. Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PLoS One 2012, 7: e39647.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peng Z, Wang H, Zhang R, Chen Y, Xue F, Nie H, et al. Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 2013, 62: 537–545.PubMedGoogle Scholar
  28. 28.
    Zhao X, Zou Y, Xu H, Fan L, Guo H, Li X, et al. Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 2012, 1482: 13–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Zeng X, Zhang S, Zhang L, Zhang K, Zheng X. A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro. Planta Med 2006, 72: 1359–1365.CrossRefPubMedGoogle Scholar
  30. 30.
    De Deyn PP, D’Hooge R, Marescau B, Pei YQ. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res 1992, 12: 87–110.CrossRefPubMedGoogle Scholar
  31. 31.
    Rubio C, Rubio-Osornio M, Retana-Marquez S, Veronica Custodio ML, Paz C. In vivo experimental models of epilepsy. Cent Nerv Syst Agents Med Chem 2010, 10: 298–309.CrossRefPubMedGoogle Scholar
  32. 32.
    Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci 2012, Chapter 9: Unit9.37. doi:  10.1002/0471142301.ns0937s58.
  33. 33.
    Velisek L, Kusa R, Kulovana M, Mares P. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. I. The effects of 2-amino-7-phosphonoheptanoate. Life Sci 1990, 46: 1349–1357.CrossRefPubMedGoogle Scholar
  34. 34.
    Wu C, Wais M, Sheppy E, del Campo M, Zhang L. A glue-based, screw-free method for implantation of intra-cranial electrodes in young mice. J Neurosci Methods 2008, 171: 126–131.CrossRefPubMedGoogle Scholar
  35. 35.
    Dupuis N, Auvin S. Inflammation and epilepsy in the developing brain: clinical and experimental evidence. CNS Neurosci Ther 2015, 21: 141–151.CrossRefPubMedGoogle Scholar
  36. 36.
    Clausen BH, Lambertsen KL, Meldgaard M, Finsen B. A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience 2005, 132: 879–892.CrossRefPubMedGoogle Scholar
  37. 37.
    Davies CA, Loddick SA, Toulmond S, Stroemer RP, Hunt J, Rothwell NJ. The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1999, 19: 87–98.CrossRefPubMedGoogle Scholar
  38. 38.
    Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013, 36: 174–184.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015, 89: 867–882.CrossRefPubMedGoogle Scholar
  40. 40.
    Ye J, Ding M, Zhang X, Rojanasakul Y, Shi X. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor–kappaB activation by phorbol 12-myristate 13-acetate. Ann Clin Lab Sci 2000, 30: 65–71.PubMedGoogle Scholar
  41. 41.
    Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP pathway in glucose and lipid metabolism. Handb Exp Pharmacol 2016, 233: 29–49.CrossRefPubMedGoogle Scholar
  42. 42.
    Peng S, Yang X, Liu GJ, Zhang XQ, Wang GL, Sun HY. From the camp pathway to search the ketamine-related learning and memory. Eur Rev Med Pharmacol Sci 2015, 19: 161–164.PubMedGoogle Scholar
  43. 43.
    McKay LI, Cidlowski JA. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 2000, 14: 1222–1234.PubMedGoogle Scholar
  44. 44.
    Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46: 470–472.CrossRefPubMedGoogle Scholar
  45. 45.
    Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014, 55: 475–482.CrossRefPubMedGoogle Scholar
  46. 46.
    Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med 2015, 5. doi: 10.1101/cshperspect.a022426.
  47. 47.
    Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010, 9: 68–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011, 20: 359–368.CrossRefPubMedGoogle Scholar
  49. 49.
    Jin B, So NK, Wang S. Advances of intracranial electroencephalography in localizing the epileptogenic zone. Neurosci Bull 2016, 32: 493–500.CrossRefPubMedGoogle Scholar
  50. 50.
    Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia 2011, 52 Suppl 3: 33–39.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Legido A, Katsetos CD. Experimental studies in epilepsy: immunologic and inflammatory mechanisms. Semin Pediatr Neurol 2014, 21: 197–206.CrossRefPubMedGoogle Scholar
  52. 52.
    de Lanerolle NC, Lee TS, Spencer DD. Astrocytes and epilepsy. Neurotherapeutics 2010, 7: 424–438.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron 2008, 58: 168–178.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang J, Zhang H, Ma H, Lu B, Li Y, Li J. Inhibitory effect of dietary n-3 polyunsaturated fatty acids to intestinal IL-15 expression is associated with reduction of TCRalphabeta+CD8alpha+CD8beta-intestinal intraepithelial lymphocytes. J Nutr Biochem 2008, 19: 475–481.CrossRefPubMedGoogle Scholar
  55. 55.
    Hale LP, Gottfried MR, Swidsinski A. Piroxicam treatment of IL-10-deficient mice enhances colonic epithelial apoptosis and mucosal exposure to intestinal bacteria. Inflamm Bowel Dis 2005, 11: 1060–1069.CrossRefPubMedGoogle Scholar
  56. 56.
    Sydora BC, Macfarlane SM, Walker JW, Dmytrash AL, Churchill TA, Doyle J, et al. Epithelial barrier disruption allows nondisease-causing bacteria to initiate and sustain IBD in the IL-10 gene-deficient mouse. Inflamm Bowel Dis 2007, 13: 947–954.CrossRefPubMedGoogle Scholar
  57. 57.
    Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 2010, 648: 110–116.CrossRefPubMedGoogle Scholar
  58. 58.
    Szczepanik AM, Ringheim GE. IL-10 and glucocorticoids inhibit Abeta(1-42)- and lipopolysaccharide-induced pro-inflammatory cytokine and chemokine induction in the central nervous system. J Alzheimers Dis 2003, 5: 105–117.CrossRefPubMedGoogle Scholar
  59. 59.
    Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 2000, 75: 248–258.CrossRefPubMedGoogle Scholar
  60. 60.
    Tukhovskaya EA, Turovsky EA, Turovskaya MV, Levin SG, Murashev AN, Zinchenko VP, et al. Anti-inflammatory cytokine interleukin-10 increases resistance to brain ischemia through modulation of ischemia-induced intracellular Ca2+ response. Neurosci Lett 2014, 571: 55–60.CrossRefPubMedGoogle Scholar
  61. 61.
    Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 2015, 85: 519–533.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29: 142–160.CrossRefPubMedGoogle Scholar
  63. 63.
    Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, et al. A novel mechanism for TNF-alpha regulation by p38 MAPK: involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J Immunol 2004, 173: 6928–6937.CrossRefPubMedGoogle Scholar
  64. 64.
    Lappas M, Permezel M, Georgiou HM, Rice GE. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 2002, 67: 668–673.CrossRefPubMedGoogle Scholar
  65. 65.
    Zingarelli B, Yang Z, Hake PW, Denenberg A, Wong HR. Absence of endogenous interleukin 10 enhances early stress response during post-ischaemic injury in mice intestine. Gut 2001, 48: 610–622.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chanteux H, Guisset AC, Pilette C, Sibille Y. LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir Res 2007, 8: 71.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jang BC, Lim KJ, Suh MH, Park JG, Suh SI. Dexamethasone suppresses interleukin-1beta-induced human beta-defensin 2 mRNA expression: involvement of p38 MAPK, JNK, MKP-1, and NF-kappaB transcriptional factor in A549 cells. FEMS Immunol Med Microbiol 2007, 51: 171–184.CrossRefPubMedGoogle Scholar
  68. 68.
    Vaillancourt F, Morquette B, Shi Q, Fahmi H, Lavigne P, Di Battista JA, et al. Differential regulation of cyclooxygenase-2 and inducible nitric oxide synthase by 4-hydroxynonenal in human osteoarthritic chondrocytes through ATF-2/CREB-1 transactivation and concomitant inhibition of NF-kappaB signaling cascade. J Cell Biochem 2007, 100: 1217–1231.CrossRefPubMedGoogle Scholar
  69. 69.
    Yabe T, Sanagi T, Schwartz JP, Yamada H. Pigment epithelium-derived factor induces pro-inflammatory genes in neonatal astrocytes through activation of NF-kappa B and CREB. Glia 2005, 50: 223–234.CrossRefPubMedGoogle Scholar
  70. 70.
    Vitor CE, Figueiredo CP, Hara DB, Bento AF, Mazzuco TL, Calixto JB. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, alpha- and beta-amyrin, in a mouse model of colitis. Br J Pharmacol 2009, 157: 1034–1044.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, et al. Cooperation of NFkappaB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010, 22: 871–881.CrossRefPubMedGoogle Scholar
  72. 72.
    Najjar S, Pearlman D, Miller DC, Devinsky O. Refractory epilepsy associated with microglial activation. Neurologist 2011, 17: 249–254.CrossRefPubMedGoogle Scholar
  73. 73.
    Najjar S, Bernbaum M, Lai G, Devinsky O. Immunology and epilepsy. Rev Neurol Dis 2008, 5: 109–116.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Neurology Department, The First People’s Hospital of JingzhouThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
  2. 2.Hubei Provincial Key Laboratory for Applied ToxicologyHubei Provincial Center for Disease Control and PreventionWuhanChina
  3. 3.Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations