Neuroscience Bulletin

, Volume 32, Issue 3, pp 253–264 | Cite as

Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration



Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.


ncRNA miRNA lncRNA Nerve injury Regeneration 


  1. 1.
    Sun F, He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol 2010, 20: 510–518.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shen D, Wang X, Gu X. Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014, 30: 967–984.PubMedCrossRefGoogle Scholar
  3. 3.
    Battiston B, Papalia I, Tos P, Geuna S. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol 2009, 87: 1–7.Google Scholar
  4. 4.
    Ma TC, Willis DE. What makes a RAG regeneration associated? Front Mol Neurosci 2015, 8: 43.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322: 963–966.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 2015, 86: 1000–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem 2010, 79: 295–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010, 220: 126–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316: 1484–1488.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaur P, Liu F, Tan JR, Lim KY, Sepramaniam S, Karolina DS, et al. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. Brain Sci 2013, 3: 360–395.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 2010, 16: 43–56.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015, 268: 46–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013, 33: 5127–5137.PubMedCrossRefGoogle Scholar
  14. 14.
    Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 2010, 107: 20382–20387.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.1098/rstb.2013.0515.
  16. 16.
    Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2012, 69: 89–102.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lee HJ. Exceptional stories of microRNAs. Exp Biol Med (Maywood) 2013, 238: 339–343.CrossRefGoogle Scholar
  18. 18.
    Arthanari Y, Heintzen C, Griffiths-Jones S, Crosthwaite SK. Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One 2014, 9: e91353.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 2012, 40: 6391–6400.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007, 8: R173.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 2006, 7: 911–920.PubMedCrossRefGoogle Scholar
  22. 22.
    He L, Lu QR. Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues. Neurosci Bull 2013, 29: 129–143.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012, 46: 263–271.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227: 172–179.PubMedCrossRefGoogle Scholar
  25. 25.
    Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, et al. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol 2014, 5: 238.Google Scholar
  26. 26.
    Xu B, Hsu PK, Karayiorgou M, Gogos JA. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012, 46: 291–301.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    O’Reilly K, Pryor J. Young people with brain injury in nursing homes: not the best option! Aust Health Rev 2002, 25: 46–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen A, Bushmeneva K, Zagorski B, Colantonio A, Parsons D, Wodchis WP. Direct cost associated with acquired brain injury in Ontario. BMC Neurol 2012, 12: 76.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439: 283–289.PubMedCrossRefGoogle Scholar
  30. 30.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004, 5: R13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    He X, Zhang Q, Liu Y, Pan X. Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin 2007, 39: 708–714.PubMedCrossRefGoogle Scholar
  32. 32.
    Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009, 21: 416–425.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015, 16: 24302–24318.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen F, Du Y, Esposito E, Liu Y, Guo S, Wang X, et al. Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Transl Stroke Res 2015, 6: 478–484.PubMedCrossRefGoogle Scholar
  35. 35.
    Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009, 29: 675–687.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008, 39: 959–966.PubMedCrossRefGoogle Scholar
  37. 37.
    Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 2012, 109: 18962–18967.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010, 285: 29223–29230.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015, 49: 75–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS Neurol Disord Drug Targets 2013, 12: 381–391.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Up-regulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res 2012, 216: 225–230.PubMedCrossRefGoogle Scholar
  42. 42.
    Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 2013, 33: 1976–1982.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 2010, 38: 17–26.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013, 61: 1018–1028.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014, 34: 3419–3428.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, et al. Down-regulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014, 277: 111–122.PubMedCrossRefGoogle Scholar
  47. 47.
    Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, et al. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015, 46: 551–556.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015, 93: 1756–1768.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 2014, 39: 1279–1291.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015, 46: 513–519.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014, 1592: 65–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, et al. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014, 1592: 22–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem 2015, 116: 233–241.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014, 5: e1132.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhu F, Liu JL, Li JP, Xiao F, Zhang ZX, Zhang L. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014, 52: 148–155.PubMedCrossRefGoogle Scholar
  56. 56.
    Meissner L, Gallozzi M, Balbi M, Schwarzmaier SM, Tiedt S, Terpolilli NA, et al. Temporal profile of microRNA expression in contused cortex following traumatic brain injury in mice. J Neurotrauma 2015. doi:10.1089/neu.2015.4077.
  57. 57.
    Miao W, Bao TH, Han JH, Yin M, Yan Y, Wang WW, et al. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz J Med Biol Res 2015, 48: 433–439.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 2011, 31: 1897–1907.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015, 265: 84–93.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, et al. miR-711 up-regulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2016, 23: 654–668.Google Scholar
  61. 61.
    Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014, 4: 6718.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Han Z, Chen F, Ge X, Tan J, Lei P, Zhang J. miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 2014, 1582: 12–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, et al. Down-regulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 2014, 34: 10055–10071.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Han F, Huo Y, Huang CJ, Chen CL, Ye J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015, 1611: 65–73.PubMedCrossRefGoogle Scholar
  65. 65.
    Fuller-Carter PI, Carter KW, Anderson D, Harvey AR, Giles KM, Rodger J. Integrated analyses of zebrafish miRNA and mRNA expression profiles identify miR-29b and miR-223 as potential regulators of optic nerve regeneration. BMC Genomics 2015, 16: 591.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yilmaz T, Kaptanoglu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015, 6: 42–55.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 2009, 219: 424–429.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 2010, 48: 192–196.PubMedCrossRefGoogle Scholar
  69. 69.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009, 12: 399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008, 314: 2618–2633.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kynast KL, Russe OQ, Moser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 2013, 154: 368–376.PubMedCrossRefGoogle Scholar
  72. 72.
    Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011, 17: 64–70.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 2012, 135: 1237–1252.PubMedCrossRefGoogle Scholar
  74. 74.
    Hu J, Zeng L, Huang J, Wang G, Lu H. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 2015, 1608: 191–202.PubMedCrossRefGoogle Scholar
  75. 75.
    Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013, 9: 328–339.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012, 7: e44789.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014, 62: 2044–2060.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu W, Li P, Qin K, Wang X, Jiang X. miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 2012, 529: 12–17.PubMedCrossRefGoogle Scholar
  79. 79.
    Dasen JS, Jessell TM. Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 2009, 88: 169–200.PubMedCrossRefGoogle Scholar
  80. 80.
    Jung H, Lacombe J, Mazzoni EO, Liem KF, Jr., Grinstein J, Mahony S, et al. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010, 67: 781–796.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dalla Torre di Sanguinetto SA, Dasen JS, Arber S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr Opin Neurobiol 2008, 18: 36–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012, 23: 508–520.PubMedCrossRefGoogle Scholar
  83. 83.
    Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015, 8: 3811–3818.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011, 33: 1587–1597.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143: 145–155.PubMedCrossRefGoogle Scholar
  86. 86.
    Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 2012, 233: 555–565.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, et al. MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 2015, 586: 43–49.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014, 259: 155–163.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011, 6: e23423.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012, 7: e44768.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Liu CM, Wang RY, Saijilafu, Jiao ZX, Zhang BY, Zhou FQ. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013, 27: 1473–1483.Google Scholar
  92. 92.
    Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.1098/rstb.2013.0517.
  93. 93.
    Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 2013, 6: 35.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhang HY, Zheng SJ, Zhao JH, Zhao W, Zheng LF, Zhao D, et al. MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 2011, 1383: 62–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011, 30: 371–380.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 2011, 21: 491–497.PubMedCrossRefGoogle Scholar
  97. 97.
    Hancock ML, Preitner N, Quan J, Flanagan JG. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 2014, 34: 66–78.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jiang JJ, Liu CM, Zhang BY, Wang XW, Zhang M, Saijilafu, et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3beta expression. Cell Death Dis 2015, 6: e1865.Google Scholar
  99. 99.
    Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 2013, 340: 372–376.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Adilakshmi T, Sudol I, Tapinos N. Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One 2012, 7: e39674.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gao R, Wang L, Sun J, Nie K, Jian H, Gao L, et al. MiR-204 promotes apoptosis in oxidative stress-induced rat Schwann cells by suppressing neuritin expression. FEBS Lett 2014, 588: 3225–3232.PubMedCrossRefGoogle Scholar
  102. 102.
    Yu B, Qian TM, Wang YJ, Zhou SL, Ding GH, Ding F, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012, 40: 10356–10365.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012, 125: 2675–2683.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, et al. MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014, 127: 967–976.PubMedCrossRefGoogle Scholar
  105. 105.
    Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, et al. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015, 23: 423–433.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yao C, Shi X, Zhang Z, Zhou S, Qian T, Wang Y, et al. Hypoxia-Induced Up-regulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Mol Neurobiol 2015. doi:10.1007/s12035-015-9449-y.
  107. 107.
    Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, et al. MicroRNA-34a suppresses invasion through down-regulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010, 31: 1037–1044.PubMedCrossRefGoogle Scholar
  108. 108.
    Kim HA, Ratner N, Roberts TM, Stiles CD. Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1. J Neurosci 2001, 21: 1110–1116.PubMedGoogle Scholar
  109. 109.
    Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009, 12: 839–847.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011, 31: 17358–17369.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009, 57: 1265–1279.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2015, 112: 6855–6862.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 2015, 46: 55–66.Google Scholar
  114. 114.
    Zhao F, Qu Y, Liu J, Liu H, Zhang L, Feng Y, et al. Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep 2015, 5: 13850.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 2013, 534: 117–122.PubMedCrossRefGoogle Scholar
  116. 116.
    Yao C, Wang J, Zhang H, Zhou S, Qian T, Ding F, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci 2015, 42: 1718–1725.PubMedCrossRefGoogle Scholar
  117. 117.
    Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer’s disease. Neurobiol. Dis. 2012, 46: 285–290.PubMedCrossRefGoogle Scholar
  118. 118.
    Li S, Xue C, Yuan Y, Zhang R, Wang Y, Yu B, et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep 2015, 5: 16888.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of NeuroregenerationNantong UniversityNantongChina

Personalised recommendations