Neuroscience Bulletin

, Volume 31, Issue 4, pp 395–406 | Cite as

Regulation of mitophagy in ischemic brain injury

  • Yang Yuan
  • Xiangnan Zhang
  • Yanrong Zheng
  • Zhong ChenEmail author


The selective degradation of damaged or excessive mitochondria by autophagy is termed mitophagy. Mitophagy is crucial for mitochondrial quality control and has been implicated in several neurodegenerative disorders as well as in ischemic brain injury. Emerging evidence suggested that the role of mitophagy in cerebral ischemia may depend on different pathological processes. In particular, a neuroprotective role of mitophagy has been proposed, and the regulation of mitophagy seems to be important in cell survival. For these reasons, extensive investigations aimed to profile the mitophagy process and its underlying molecular mechanisms have been executed in recent years. In this review, we summarize the current knowledge regarding the mitophagy process and its role in cerebral ischemia, and focus on the pathological events and molecules that regulate mitophagy in ischemic brain injury.


mitophagy ischemic brain injury mitochondria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962, 12: 198–202.PubMedCentralPubMedGoogle Scholar
  2. [2]
    Rajawat YS, Bossis I. Autophagy in aging and in neurodegenerative disorders. Hormones (Athens) 2008, 7: 46–61.Google Scholar
  3. [3]
    Mizushima N. Autophagy: process and function. Genes Dev 2007, 21: 2861–2873.PubMedGoogle Scholar
  4. [4]
    Bamber BA, Rowland AM. Shaping cellular form and function by autophagy. Autophagy 2006, 2: 247–249.PubMedGoogle Scholar
  5. [5]
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432: 1032–1036.PubMedGoogle Scholar
  6. [6]
    Balduini W, Carloni S, Buonocore G. Autophagy in hypoxiaischemia induced brain injury: evidence and speculations. Autophagy 2009, 5: 221–223.PubMedGoogle Scholar
  7. [7]
    Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006, 281: 30299–30304.PubMedCentralPubMedGoogle Scholar
  8. [8]
    Ding Z, Liu S, Wang X, Dai Y, Khaidakov M, Romeo F, et al. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis. Can J Physiol Pharmacol 2014, 92: 524–530.PubMedGoogle Scholar
  9. [9]
    Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci 2009, 30: 2258–2270.PubMedGoogle Scholar
  10. [10]
    Heras-Sandoval D, Perez-Rojas JM, Hernandez-Damian J, Pedraza- Chaverri J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 2014, 26: 2694–2701.PubMedGoogle Scholar
  11. [11]
    Kim Y C, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 2015, 125: 25–32.PubMedGoogle Scholar
  12. [12]
    Hale A N, Ledbetter DJ, Gawriluk TR, Rucker EB, 3rd. Autophagy: regulation and role in development. Autophagy 2013, 9: 951–972.PubMedCentralPubMedGoogle Scholar
  13. [13]
    Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014, 24: 42–57.PubMedCentralPubMedGoogle Scholar
  14. [14]
    Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004, 10 Suppl: S10–17.PubMedGoogle Scholar
  15. [15]
    Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 2013, 9: 1321–1333.PubMedGoogle Scholar
  16. [16]
    Xu F, Gu J H, Qin ZH. Neuronal autophagy in cerebral ischemia. Neurosci Bull 2012, 28: 658–666.PubMedGoogle Scholar
  17. [17]
    Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 2008, 4: 762–769.PubMedGoogle Scholar
  18. [18]
    Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 2010, 6: 482–494.PubMedGoogle Scholar
  19. [19]
    Yan H, Zhang X, Hu W, Ma J, Hou W, Zhang X, et al. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms. Nat Commun 2014, 5: 3334.PubMedCentralPubMedGoogle Scholar
  20. [20]
    Gabryel B, Kost A, Kasprowska D. Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies? Pharmacol Rep 2012, 64: 1–15.PubMedGoogle Scholar
  21. [21]
    Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 2009, 66: 378–389.PubMedGoogle Scholar
  22. [22]
    Wei K, Wang P, Miao CY. A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 2012, 18: 879–886.PubMedGoogle Scholar
  23. [23]
    Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 2014, 24: 787–795.PubMedCentralPubMedGoogle Scholar
  24. [24]
    Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, et al. A synergistic dysfunction of mitochondrial fission/ fusion dynamics and mitophagy in Alzheimer's disease. J Alzheimers Dis 2010, 20 Suppl 2: S401–412.Google Scholar
  25. [25]
    Vives-Bauza C, Przedborski S. Mitophagy: the latest problem for Parkinson's disease. Trends Mol Med 2011, 17: 158–165.PubMedGoogle Scholar
  26. [26]
    Zuo W, Zhang S, Xia CY, Guo XF, He WB, Chen NH. Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: the role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology 2014, 86: 103–115.PubMedGoogle Scholar
  27. [27]
    Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 2011, 6: e20975.PubMedCentralPubMedGoogle Scholar
  28. [28]
    Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 2014, 444: 182–188.PubMedGoogle Scholar
  29. [29]
    Kariman K. Mechanism of cell damage in brain ischemia: a hypothesis. Life Sci 1985, 37: 71–73.PubMedGoogle Scholar
  30. [30]
    Umemura A, Nagai H, Mabe H. Biochemistry of brain ischemia—mechanism of delayed neuronal death. Nihon Rinsho 1993, 51 Suppl: 405–412.PubMedGoogle Scholar
  31. [31]
    Hu W, Xu L, Pan J, Zheng X, Chen Z. Effect of cerebral ischemia on brain mast cells in rats. Brain Res 2004, 1019: 275–280.PubMedGoogle Scholar
  32. [32]
    Guo ZH, Li F, Wang WZ. T he mechanisms of brain ischemic insult and potential protective interventions. Neurosci Bull 2009, 25: 139–152.PubMedGoogle Scholar
  33. [33]
    Raichle ME. The pathophys iology of brain ischemia. Ann Neurol 1983, 13: 2–10.PubMedGoogle Scholar
  34. [34]
    Li J, Lu J, Mi Y, Shi Z, Chen C, Riley J, et al. Voltagedependent anion channels (VDACs) promote mitophagy to protect neuron from death in an early brain injury following a subarachnoid hemorrhage in rats. Brain Res 2014, 1573: 74–83.PubMedGoogle Scholar
  35. [35]
    Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, et al. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab 2013, 18: 844–859.PubMedGoogle Scholar
  36. [36]
    Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 2010, 6: 738–753.PubMedGoogle Scholar
  37. [37]
    Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther 2014, 20: 1045–1055.PubMedGoogle Scholar
  38. [38]
    Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008, 32: 329–339.PubMedGoogle Scholar
  39. [39]
    Mengesdorf T, Jensen PH, Mies G, Aufenberg C, Paschen W. Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? Proc Natl Acad Sci U S A 2002, 99: 15042–15047.PubMedCentralPubMedGoogle Scholar
  40. [40]
    Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta 2014, 1837: 451–460.PubMedGoogle Scholar
  41. [41]
    Miyamoto O, Auer RN. Hypoxia, hyp eroxia, ischemia, and brain necrosis. Neurology 2000, 54: 362–371.PubMedGoogle Scholar
  42. [42]
    Mi H, Liu X, Zhu Y, Liu Y, Wang Y. Magnolol derivative 002C- 3 protects brain against ischemia-reperfusion injury via inhibiting apoptosis and autophagy. Neurosci Lett 2015, 588: 178–183.Google Scholar
  43. [43]
    Liu X, Wang M, Chen H, Guo Y, Ma F, Shi F, et al. Hypothermia protects the brain from transient global ischemia/reperfusion by attenuating endoplasmic reticulum response-induced apoptosis through CHOP. PLoS One 2013, 8: e53431.PubMedCentralPubMedGoogle Scholar
  44. [44]
    Chen CH, Jiang Z, Yan JH, Yang L, Wang K, Chen YY, et al. The involvement of programmed cell death 5 (PDCD5) in the regulation of apoptosis in cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2013, 19: 566–576.PubMedGoogle Scholar
  45. [45]
    Nakka VP, Gusain A, Raghubir R. Endo plasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 2010, 17: 189–202.PubMedGoogle Scholar
  46. [46]
    Sanderson TH, Gallaway M, Kumar R. Un folding the unfolded protein response: unique insights into brain ischemia. Int J Mol Sci 2015, 16: 7133–7142.PubMedCentralPubMedGoogle Scholar
  47. [47]
    Szegezdi E, Duffy A, O'Mahoney ME, Logue SE, Mylotte LA, O'Brien T, et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun 2006, 349: 1406–1411.PubMedGoogle Scholar
  48. [48]
    Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, et al. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 2004, 11: 403–415.PubMedGoogle Scholar
  49. [49]
    Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 2007, 27: 901–908.PubMedGoogle Scholar
  50. [50]
    Begum G, Kintner D, Liu Y, Cramer SW, Sun D. DHA inhibits ER Ca2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem 2012, 120: 622–630.PubMedCentralPubMedGoogle Scholar
  51. [51]
    Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 2013, 12: 105–118.PubMedGoogle Scholar
  52. [52]
    Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 2012, 8: 310–325.PubMedGoogle Scholar
  53. [53]
    Petrovski G, Das S, Juhasz B, Kertesz A, Tosaki A, Das DK. Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxid Redox Signal 2011, 14: 2191–2200.PubMedGoogle Scholar
  54. [54]
    Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy 2014, 10: 1801–1813.PubMedGoogle Scholar
  55. [55]
    Bueno M, Lai YC, Romero Y, Brands J, StCroix CM, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 2015, 125: 521–538.PubMedCentralPubMedGoogle Scholar
  56. [56]
    Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495: 389–393.PubMedGoogle Scholar
  57. [57]
    Takahashi S. Astroglial protective mechanisms a gainst ROS under brain ischemia. Rinsho Shinkeigaku 2011, 51: 1032–1035.PubMedGoogle Scholar
  58. [58]
    Sun M, Li M, Huang Q, Han F, Gu JH, Xie J, et al. Ischemia/ reperfusion-induced upregulation of TIGAR in brain is mediated by SP1 and modulated by ROS and hormones involved in glucose metabolism. Neurochem Int 2015, 80: 99–109.PubMedGoogle Scholar
  59. [59]
    Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial rea ctive oxygen species: a double edged sword in ischemia/ reperfusion vs preconditioning. Redox Biol 2014, 2: 702–714.PubMedCentralPubMedGoogle Scholar
  60. [60]
    Shen Y, He P, Fan YY, Zhang JX, Yan HJ, Hu WW, et a l. Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic Biol Med 2010, 48: 727–735.PubMedGoogle Scholar
  61. [61]
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009, 417: 1–13.PubMedCentralPubMedGoogle Scholar
  62. [62]
    Wang Y, Nartiss Y, Steipe B, Mc Quibban GA, Kim PK. RO Sinduced mitochondrial depolarization initiates PARK2/ PARKIN-dependent mitochondrial degradation by autophagy. Autophagy 2012, 8: 1462–1476.PubMedGoogle Scholar
  63. [63]
    Frank M, Duvezin-Caubet S, Koob S, Occhipinti A, Jagasia R, Petcherski A, et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 2012, 1823: 2297–2310.PubMedGoogle Scholar
  64. [64]
    Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2011, 36: 30–38.PubMedGoogle Scholar
  65. [65]
    Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 1982, 245: 307–316.PubMedGoogle Scholar
  66. [66]
    Sheng H, Enghild JJ, Bowler R, Patel M, Batinic-Haberle I, Calvi CL, et al. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic Biol Med 2002, 33: 947–961.PubMedGoogle Scholar
  67. [67]
    Shen WH, Zhang CY, Zhang GY. Antioxidants attenuate reperf usion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol Sin 2003, 24: 1125–1130.PubMedGoogle Scholar
  68. [68]
    Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Na kaoka M, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol 2012, 52: 175–184.PubMedGoogle Scholar
  69. [69]
    Xu XM, Moller SG. ROS removal by DJ-1: Arabidopsis as a new model to understand Parkinson's Disease. Plant Signal Behav 2010, 5: 1034–1036.PubMedCentralPubMedGoogle Scholar
  70. [70]
    Shen Y, Hu WW, Fan YY, Dai HB, Fu QL, Wei EQ, et al. Carnosin e protects against NMDA-induced neurotoxicity in differentiated rat PC12 cells through carnosine-histidinehistamine pathway and H(1)/H(3) receptors. Biochem Pharmacol 2007, 73: 709–717.PubMedGoogle Scholar
  71. [71]
    Molinuevo JL, Llado A, Rami L. Memantine: targeting glutamate excitotoxicity in Alzheimer's disease and other dementias. Am J Alzheimers Dis Other Demen 2005, 20: 77–85.PubMedGoogle Scholar
  72. [72]
    Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 2015, 74: 180–193.PubMedGoogle Scholar
  73. [73]
    lark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Dr osophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441: 1162–1166.Google Scholar
  74. [74]
    Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010, 8: e1000298.PubMedCentralPubMedGoogle Scholar
  75. [75]
    Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 2015, 33: 95–101.PubMedGoogle Scholar
  76. [76]
    Lwabuchi M, Sheng H, Thompson JW, Wang L, Dubois LG, Gooden D, et al. Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. J Cereb Blood Flow Metab 2014, 34: 425–432.Google Scholar
  77. [77]
    Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, et al. P arkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 2013, 288: 915–926.PubMedCentralPubMedGoogle Scholar
  78. [78]
    Thomas RL, Kubli DA, Gustafsson AB. Bnip3-mediated defects in oxidat ive phosphorylation promote mitophagy. Autophagy 2011, 7: 775–777.PubMedGoogle Scholar
  79. [79]
    Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008, 454: 232–235.PubMedCentralPubMedGoogle Scholar
  80. [80]
    Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and m itophagy. Cell Death Differ 2009, 16: 939–946.PubMedCentralPubMedGoogle Scholar
  81. [81]
    Ney PA. Mitochondrial autophagy: Origins, significance, and role of BNI P3 and NIX. Biochim Biophys Acta 2015.Google Scholar
  82. [82]
    Gao F, Chen D, Si J, Hu Q, Qin Z, Fang M, et al. The mitochondrial prot ein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 2015, 24: 2528–2538.PubMedGoogle Scholar
  83. [83]
    Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial out er-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012, 14: 177–185.PubMedGoogle Scholar
  84. [84]
    Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, et al. ULK1 translocates to mi tochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 2014, 15: 566–575.PubMedCentralPubMedGoogle Scholar
  85. [85]
    Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitinp62- mediated mitochondrial priming. J Biol Chem 2010, 285: 27879–27890.PubMedCentralPubMedGoogle Scholar
  86. [86]
    Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, et al. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ 2010, 17: 962–974.PubMedGoogle Scholar
  87. [87]
    Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct r oles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007, 100: 914–922.PubMedGoogle Scholar
  88. [88]
    Zheng YQ, Liu JX, Li XZ, Xu L, Xu YG. RNA interferencemediated downregulatio n of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin 2009, 30: 919–927.PubMedCentralPubMedGoogle Scholar
  89. [89]
    Zhu M, Zhou M, Shi Y, Li WW. Effects of echinacoside on MPP(+)-induced mitocho ndrial fragmentation, mitophagy and cell apoptosis in SH-SY5Y cells. Zhong Xi Yi Jie He Xue Bao 2012, 10: 1427–1432.PubMedGoogle Scholar
  90. [90]
    Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PIN K1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010, 12: 119–131.PubMedGoogle Scholar
  91. [91]
    Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required fo r Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6: 1090–1106.PubMedCentralPubMedGoogle Scholar
  92. [92]
    Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy —in neurodegenerative diseases. Hum Mol Genet 2009, 18: R169–176.PubMedCentralPubMedGoogle Scholar
  93. [93]
    Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. A ntioxid Redox Signal 2011, 14: 1939–1951.Google Scholar
  94. [94]
    Mao K, Klionsky DJ. Participation of mitochondrial fission during mitophagy. Cell C ycle 2013, 12: 3131–3132.Google Scholar
  95. [95]
    Santel A, Frank S. Shaping mitochondria: The complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 2008, 60: 448–455.PubMedGoogle Scholar
  96. [96]
    Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 2010, 5: e10054.PubMedCentralPubMedGoogle Scholar
  97. [97]
    Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, et al. Loss of parkin o r PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 2009, 284: 22938–22951.PubMedCentralPubMedGoogle Scholar
  98. [98]
    Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, et al. p62/SQSTM1 cooper ates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010, 15: 887–900.PubMedCentralPubMedGoogle Scholar
  99. [99]
    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds di rectly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282: 24131–24145.PubMedGoogle Scholar
  100. [100]
    Grullich C, Duvoisin RM, Wiedmann M, van Leyen K. Inhibition of 15-lipoxygenase leads t o delayed organelle degradation in the reticulocyte. FEBS Lett 2001, 489: 51–54.PubMedGoogle Scholar
  101. [101]
    Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, Mc Castlain K, et al. Hsp90-Cdc 37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 2011, 43: 572–585.PubMedCentralPubMedGoogle Scholar
  102. [102]
    Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPKsignaling pathways are required for mi tophagy in Saccharomyces cerevisiae. J Cell Biol 2011, 193: 755–767.PubMedCentralPubMedGoogle Scholar
  103. [103]
    Piao CS, Kim JB, Han PL, Lee JK. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 2003, 73: 537–544.PubMedGoogle Scholar
  104. [104]
    Pei H, Song X, Peng C, Tan Y, Li Y, Li X, et al. TNF-alpha inhibitor protects against myoca rdial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic Biol Med 2015, 82: 114–121.PubMedGoogle Scholar
  105. [105]
    Lupfer C, Thomas PG, Anand PK, Vogel P, Milasta S, Martinez J, et al. Receptor interacting p rotein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol 2013, 14: 480–488.PubMedCentralPubMedGoogle Scholar
  106. [106]
    Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 2012, 22: 320–333.PubMedCentralPubMedGoogle Scholar
  107. [107]
    Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 2010, 19: 4861–4870.PubMedCentralPubMedGoogle Scholar
  108. [108]
    Yoshioka H, Katsu M, Sakata H, Okami N, Wakai T, Kinouchi H, et al. The role of PARL and HtrA2 in striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 2013, 33: 1658–1665.PubMedCentralPubMedGoogle Scholar
  109. [109]
    Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The mitochondrial intramembrane proteas e PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 2011, 117: 856–867.PubMedGoogle Scholar
  110. [110]
    Hollville E, Carroll RG, Cullen SP, Martin SJ. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell 2014, 55: 451–466.PubMedGoogle Scholar
  111. [111]
    Wu H, Xue D, Chen G, Han Z, Huang L, Zhu C, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induc ed receptormediated mitophagy. Autophagy 2014, 10: 1712–1725.PubMedGoogle Scholar
  112. [112]
    Yang KC, Ma X, Liu H, Murphy J, Barger PM, Mann DL, et al. Tumor necrosis factor receptor-associate d factor 2 mediates mitochondrial autophagy. Circ Heart Fail 2015, 8: 175–187.PubMedGoogle Scholar
  113. [113]
    Kanki T. Nix, a receptor protein for mitophagy in mammals. Autophagy 2010, 6: 433–435.PubMedGoogle Scholar
  114. [114]
    Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Diseasecausing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 2010, 189: 671–679.PubMedCentralPubMedGoogle Scholar
  115. [115]
    Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. The HMGB1 receptor RAGE med iates ischemic brain damage. J Neurosci 2008, 28: 12023–12031.PubMedGoogle Scholar
  116. [116]
    Stetler RA, Gao Y, Zhang L, Weng Z, Zhang F, Hu X, et al. Phosphorylation of HSP27 by protein kinase D is essential for mediating neuroprotection against ischemic neuronal injury. J Neurosci 2012, 32: 2667–2682.PubMedCentralPubMedGoogle Scholar
  117. [117]
    Bischoff P, Josset E, Dumont FJ. Novel pharmacological modulators of autophagy and therapeutic prospects. Expert Opin Ther Pat 2012, 22: 1053–1079.PubMedGoogle Scholar
  118. [118]
    Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate th erapeutic autophagy-inducing peptide. Nature 2013, 494: 201–206.PubMedCentralPubMedGoogle Scholar
  119. [119]
    Jimenez RE, Kubli DA, Gustafsson AB. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br J Pharmacol 2014, 171: 1907–1916PubMedCentralPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yang Yuan
    • 1
  • Xiangnan Zhang
    • 1
  • Yanrong Zheng
    • 1
  • Zhong Chen
    • 1
    Email author
  1. 1.Department of Pharmacology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations