Neuroscience Bulletin

, Volume 32, Issue 1, pp 108–114 | Cite as

The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases

Review

Abstract

The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.

Keywords

TLX Neural stem cell Neurogenesis 

References

  1. 1.
    Pardee K, Necakov AS, Krause H. Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Subcell Biochem 2011, 52: 123–153.CrossRefPubMedGoogle Scholar
  2. 2.
    Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharmacol Rev 2006, 58: 685–704.CrossRefPubMedGoogle Scholar
  3. 3.
    King-Jones K, Thummel CS. Nuclear receptors—a perspective from Drosophila. Nat Rev Genet 2005, 6: 311–323.CrossRefPubMedGoogle Scholar
  4. 4.
    Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014, 20: 12062–12081.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Yu RT, McKeown M, Evans RM, Umesono K. Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature 1994, 370: 375–379.CrossRefPubMedGoogle Scholar
  6. 6.
    Jackson A, Panayiotidis P, Foroni L. The human homologue of the Drosophila tailless gene (TLX): characterization and mapping to a region of common deletion in human lymphoid leukemia on chromosome 6q21. Genomics 1998, 50: 34–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Abrahams BS, Mak GM, Berry ML, Palmquist DL, Saionz JR, Tay A, et al. Novel vertebrate genes and putative regulatory elements identified at kidney disease and NR2E1/fierce loci. Genomics 2002, 80: 45–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Kitambi SS, Hauptmann G. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain. Gene Expr Patterns 2007, 7: 521–528.CrossRefPubMedGoogle Scholar
  9. 9.
    Pignoni F, Baldarelli RM, Steingrimsson E, Diaz RJ, Patapoutian A, Merriam JR, et al. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 1990, 62: 151–163.CrossRefPubMedGoogle Scholar
  10. 10.
    Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, Chang B, et al. Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 2002, 132: 145–158.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Gui H, Li ML, Tsai CC. A tale of tailless. Dev Neurosci 2011, 33: 1–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Moran E, Jimenez G. The tailless nuclear receptor acts as a dedicated repressor in the early Drosophila embryo. Mol Cell Biol 2006, 26: 3446–3454.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Abrahams BS, Kwok MC, Trinh E, Budaghzadeh S, Hossain SM, Simpson EM. Pathological aggression in “fierce” mice corrected by human nuclear receptor 2E1. J Neurosci 2005, 25: 6263–6270.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmouth JF, Banks KG, Mathelier A, Gregory-Evans CY, Castellarin M, Holt RA, et al. Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice. Mol Cell Biol 2012, 32: 1296–1311.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, et al. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet B Neuropsychiatr Genet 2008, 147B: 880–889.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu HK, Wang Y, Belz T, Bock D, Takacs A, Radlwimmer B, et al. The nuclear receptor tailless induces long-term neural stem cell expansion and brain tumor initiation. Genes Dev 2010, 24: 683–695.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol 2007, 69: 201–220.CrossRefPubMedGoogle Scholar
  18. 18.
    Benod C, Villagomez R, Filgueira CS, Hwang PK, Leonard PG, Poncet-Montange G, et al. The human orphan nuclear receptor tailless (TLX, NR2E1) is druggable. PLoS One 2014, 9: e99440.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Haffner CD, Lenhard JM, Miller AB, McDougald DL, Dwornik K, Ittoop OR, et al. Structure-based design of potent retinoid X receptor alpha agonists. J Med Chem 2004, 47: 2010–2029.CrossRefPubMedGoogle Scholar
  20. 20.
    Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, et al. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 2008, 6: e227.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C, et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 2010, 12: 31–40.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, et al. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes Dev 2015, 29: 440–450.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Nusslein-Volhard C, Wieschaus E, Kluding H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 1984, 193: 267–282.CrossRefGoogle Scholar
  24. 24.
    Rudolph KM, Liaw GJ, Daniel A, Green P, Courey AJ, Hartenstein V, et al. Complex regulatory region mediating tailless expression in early embryonic patterning and brain development. Development 1997, 124: 4297–4308.PubMedGoogle Scholar
  25. 25.
    Steingrimsson E, Pignoni F, Liaw GJ, Lengyel JA. Dual role of the Drosophila pattern gene tailless in embryonic termini. Science 1991, 254: 418–421.CrossRefPubMedGoogle Scholar
  26. 26.
    Casanova J. Pattern formation under the control of the terminal system in the Drosophila embryo. Development 1990, 110: 621–628.PubMedGoogle Scholar
  27. 27.
    Strecker TR, Merriam JR, Lengyel JA. Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo. Development 1988, 102: 721–734.PubMedGoogle Scholar
  28. 28.
    Younossi-Hartenstein A, Green P, Liaw GJ, Rudolph K, Lengyel J, Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol 1997, 182: 270–283.CrossRefPubMedGoogle Scholar
  29. 29.
    Daniel A, Dumstrei K, Lengyel JA, Hartenstein V. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 1999, 126: 2945–2954.PubMedGoogle Scholar
  30. 30.
    Monaghan AP, Grau E, Bock D, Schutz G. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 1995, 121: 839–853.PubMedGoogle Scholar
  31. 31.
    Miyawaki T, Uemura A, Dezawa M, Yu RT, Ide C, Nishikawa S, et al. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci 2004, 24: 8124–8134.CrossRefPubMedGoogle Scholar
  32. 32.
    Yu RT, Chiang MY, Tanabe T, Kobayashi M, Yasuda K, Evans RM, et al. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proc Natl Acad Sci USA 2000, 97: 2621–2625.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Stenman J, Yu RT, Evans RM, Campbell K. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 2003, 130: 1113–1122.CrossRefPubMedGoogle Scholar
  34. 34.
    Shi Y, Chichung Lie D, Taupin P, Nakashima K, Ray J, Yu RT, et al. Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 2004, 427: 78–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu HK, Belz T, Bock D, Takacs A, Wu H, Lichter P, et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev 2008, 22: 2473–2478.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Zhang CL, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 2008, 451: 1004–1007.CrossRefPubMedGoogle Scholar
  37. 37.
    Li W, Sun G, Yang S, Qu Q, Nakashima K, Shi Y. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol Endocrinol 2008, 22: 56–64.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Roy K, Kuznicki K, Wu Q, Sun Z, Bock D, Schutz G, et al. The Tlx gene regulates the timing of neurogenesis in the cortex. J Neurosci 2004, 24: 8333–8345.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Nishimura M, Naito S, Yokoi T. Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharmacokinet 2004, 19: 135–149.CrossRefPubMedGoogle Scholar
  40. 40.
    Hartmann B, Reichert H, Walldorf U. Interaction of gap genes in the Drosophila head: tailless regulates expression of empty spiracles in early embryonic patterning and brain development. Mech Dev 2001, 109: 161–172.CrossRefPubMedGoogle Scholar
  41. 41.
    Pankratz MJ, Hoch M, Seifert E, Jackle H. Kruppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 1989, 341: 337–340.CrossRefPubMedGoogle Scholar
  42. 42.
    Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 2006, 133: 2639–2648.CrossRefPubMedGoogle Scholar
  43. 43.
    Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006, 124: 1241–1253.CrossRefPubMedGoogle Scholar
  44. 44.
    Kurusu M, Maruyama Y, Adachi Y, Okabe M, Suzuki E, Furukubo-Tokunaga K. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Dev Biol 2009, 326: 224–236.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang CL, Zou Y, Yu RT, Gage FH, Evans RM. Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. Genes Dev 2006, 20: 1308–1320.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Sun G, Yu RT, Evans RM, Shi Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci USA 2007, 104: 15282–15287.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009, 16: 365–371.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Qin S, Niu W, Iqbal N, Smith DK, Zhang CL. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling. Front Neurosci 2014, 8: 74.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Niu W, Zou Y, Shen C, Zhang CL. Activation of postnatal neural stem cells requires nuclear receptor TLX. J Neurosci 2011, 31: 13816–13828.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Sehgal R, Sheibani N, Rhodes SJ, Belecky Adams TL. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression. Dev Biol 2009, 332: 429–443.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Elmi M, Matsumoto Y, Zeng ZJ, Lakshminarasimhan P, Yang W, Uemura A, et al. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci 2010, 45: 121–131.CrossRefPubMedGoogle Scholar
  52. 52.
    Iwahara N, Hisahara S, Hayashi T, Horio Y. Transcriptional activation of NAD + -dependent protein deacetylase SIRT1 by nuclear receptor TLX. Biochem Biophys Res Commun 2009, 386: 671–675.CrossRefPubMedGoogle Scholar
  53. 53.
    Chavali PL, Saini RK, Matsumoto Y, Agren H, Funa K. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia. J Biol Chem 2011, 286: 9393–9404.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Sun G, Alzayady K, Stewart R, Ye P, Yang S, Li W, et al. Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol 2010, 30: 1997–2005.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Zeng ZJ, Johansson E, Hayashi A, Chavali PL, Akrap N, Yoshida T, et al. TLX controls angiogenesis through interaction with the von Hippel-Lindau protein. Biol Open 2012, 1: 527–535.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Chavali PL, Saini RK, Zhai Q, Vizlin-Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis 2014, 5: e1502.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Yokoyama A, Takezawa S, Schule R, Kitagawa H, Kato S. Transrepressive function of TLX requires the histone demethylase LSD1. Mol Cell Biol 2008, 28: 3995–4003.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Estruch SB, Buzon V, Carbo LR, Schorova L, Luders J, Estebanez-Perpina E. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function. PLoS One 2012, 7: e37963.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Wang Y, Liu HK, Schutz G. Role of the nuclear receptor Tailless in adult neural stem cells. Mech Dev 2013, 130: 388–390.CrossRefPubMedGoogle Scholar
  60. 60.
    Land PW, Monaghan AP. Abnormal development of zinc-containing cortical circuits in the absence of the transcription factor Tailless. Brain Res Dev Brain Res 2005, 158: 97–101.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Land PW, Monaghan AP. Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 2003, 13: 921–931.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Monaghan AP, Bock D, Gass P, Schwager A, Wolfer DP, Lipp HP, et al. Defective limbic system in mice lacking the tailless gene. Nature 1997, 390: 515–517.CrossRefPubMedGoogle Scholar
  63. 63.
    O’Loghlen A, Martin N, Krusche B, Pemberton H, Alonso MM, Chandler H, et al. The nuclear receptor NR2E1/TLX controls senescence. Oncogene 2015, 34: 4069–4077.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Wu D, Yu S, Jia L, Zou C, Xu Z, Xiao L, et al. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1)) and SIRT1 genes. J Pathol 2015, 236: 103–115.CrossRefPubMedGoogle Scholar
  65. 65.
    Uemura A, Kusuhara S, Wiegand SJ, Yu RT, Nishikawa S. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes. J Clin Invest 2006, 116: 369–377.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Kumar RA, Everman DB, Morgan CT, Slavotinek A, Schwartz CE, Simpson EM. Absence of mutations in NR2E1 and SNX3 in five patients with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and related phenotypes. BMC Med Genet 2007, 8: 48.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Corso-Diaz X, Borrie AE, Bonaguro R, Schuetz JM, Rosenberg T, Jensen H, et al. Absence of NR2E1 mutations in patients with aniridia. Mol Vis 2012, 18: 2770–2782.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, et al. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 2006, 24: 5223–5233.CrossRefPubMedGoogle Scholar
  69. 69.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321: 1807–1812.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006, 9: 157–173.CrossRefPubMedGoogle Scholar
  71. 71.
    Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 2007, 67: 890–900.CrossRefPubMedGoogle Scholar
  72. 72.
    Sim FJ, Keyoung HM, Goldman JE, Kim DK, Jung HW, Roy NS, et al. Neurocytoma is a tumor of adult neuronal progenitor cells. J Neurosci 2006, 26: 12544–12555.CrossRefPubMedGoogle Scholar
  73. 73.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005, 8: 323–335.CrossRefPubMedGoogle Scholar
  74. 74.
    Park HJ, Kim JK, Jeon HM, Oh SY, Kim SH, Nam DH, et al. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells. Mol Cells 2010, 30: 403–408.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore Pte Ltd 2016

Authors and Affiliations

  1. 1.Department of Intensive Care, Southwest HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations