Neuroscience Bulletin

, Volume 30, Issue 5, pp 812–822 | Cite as

Role of cortical spreading depression in the pathophysiology of migraine



A migraine is a recurring neurological disorder characterized by unilateral, intense, and pulsatile headaches. In one-third of migraine patients, the attacks are preceded by a visual aura, such as a slowly-propagating scintillating scotoma. Migraine aura is thought to be a result of the neurovascular phenomenon of cortical spreading depression (SD), a self-propagating wave of depolarization that spreads across the cerebral cortex. Several animal experiments have demonstrated that cortical SD causes intracranial neurogenic inflammation around the meningeal blood vessels, such as plasma protein extravasation and pro-inflammatory peptide release. Cortical SD has also been reported to activate both peripheral and central trigeminal nociceptive pathways. Although several issues remain to be resolved, recent evidence suggests that cortical SD could be the initial trigger of intracranial neurogenic inflammation, which then contributes to migraine headaches via subsequent activation of trigeminal afferents.


cortical spreading depression migraine neurogenic inflammation PET trigeminal nociceptive pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol 1944, 7: 359–390.Google Scholar
  2. [2]
    Nedergaard M, Hansen AJ. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 1988, 449: 395–398.PubMedCrossRefGoogle Scholar
  3. [3]
    Cui Y, Kataoka Y, Li QH, Yokoyama C, Yamagata A, Mochizuki-Oda N, et al. Targeted tissue oxidation in the cerebral cortex induces local prolonged depolarization and cortical spreading depression in the rat brain. Biochem Biophys Res Commun 2003, 300: 631–636.PubMedCrossRefGoogle Scholar
  4. [4]
    Fabricius M, Akgoren N, Lauritzen M. Arginine nitric-oxide pathway and cerebrovascular regulation in cortical spreading depression. Am J Physiol 1995, 269: H23–H29.PubMedGoogle Scholar
  5. [5]
    Hansen AJ, Zeuthen T. Extracellular ion concentrations during spreading depression and ischemia in the rat-brain cortex. Acta Physiol Scand 1981, 113: 437–445.PubMedCrossRefGoogle Scholar
  6. [6]
    Lauritzen M, Jorgensen MB, Diemer NH, Gjedde A, Hansen AJ. Persistent oligemia of rat cerebral-cortex in the wake of spreading depression. Ann Neurol 1982, 12: 469–474.PubMedCrossRefGoogle Scholar
  7. [7]
    Milner PM. Note on a possible correspondence between the scotomas of migraine and spreading depression of Leao. Electroencephalogr Clin Neurophysiol 1958, 10: 705–705.PubMedCrossRefGoogle Scholar
  8. [8]
    Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 1994, 117: 199–210.Google Scholar
  9. [9]
    Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia 1992, 12: 221–228; discussion 186.PubMedCrossRefGoogle Scholar
  10. [10]
    Lashley KS. Patterns of cerebral integration indicated by the scotomas of migraine. Arch NeurPsych 1941, 46: 331–339.CrossRefGoogle Scholar
  11. [11]
    Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 1987, 7: 4129–4136.PubMedGoogle Scholar
  12. [12]
    Moskowitz MA. The neurobiology of vascular head pain. Ann Neurol 1984, 16: 157–168.PubMedCrossRefGoogle Scholar
  13. [13]
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 2002, 8: 136–142.PubMedCrossRefGoogle Scholar
  14. [14]
    Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri M, Tamura Y, et al. 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain after cortical spreading depression. J Nucl Med 2009, 50: 1904–1911.PubMedCrossRefGoogle Scholar
  15. [15]
    Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, et al. Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 2004, 113: 1447–1455.PubMedCrossRefPubMedCentralGoogle Scholar
  16. [16]
    Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 2010, 30: 8807–8814.PubMedCrossRefPubMedCentralGoogle Scholar
  17. [17]
    Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 2011, 69: 855–865.PubMedCrossRefPubMedCentralGoogle Scholar
  18. [18]
    The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004, 24Suppl 1: 9–160.Google Scholar
  19. [19]
    Blau JN. Migraine: theories of pathogenesis. Lancet 1992, 339: 1202–1207.PubMedCrossRefGoogle Scholar
  20. [20]
    Lipton RB, Scher AI, Kolodner K, Liberman J, Steiner TJ, Stewart WF. Migraine in the United States: epidemiology and patterns of health care use. Neurology 2002, 58: 885–894.PubMedCrossRefGoogle Scholar
  21. [21]
    Silberstein SD. Migraine. Lancet 2004, 363: 381–391.PubMedCrossRefGoogle Scholar
  22. [22]
    Graham JR, Wolff HG. Mechanism of migraine headache and action of ergotamine tartrate. Arch NeurPsych 1938, 39: 737–763.CrossRefGoogle Scholar
  23. [23]
    Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of Rcbf in classic migraine. Ann Neurol 1981, 9: 344–352.PubMedCrossRefGoogle Scholar
  24. [24]
    Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 1994, 331: 1689–1692.PubMedCrossRefGoogle Scholar
  25. [25]
    Lauritzen M. Cerebral blood flow in migraine and cortical spreading depression. Acta Neurol Scand Suppl 1987, 113: 1–40.PubMedCrossRefGoogle Scholar
  26. [26]
    Andersen AR, Friberg L, Olsen TS, Olesen J. Delayed hyperemia following hypoperfusion in classic migraine. Single photon emission computed tomographic demonstration. Arch Neurol 1988, 45: 154–159.Google Scholar
  27. [27]
    Olesen J, Friberg L, Olsen TS, Iversen HK, Lassen NA, Andersen AR, et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol 1990, 28: 791–798.PubMedCrossRefGoogle Scholar
  28. [28]
    Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988, 23: 193–196.PubMedCrossRefGoogle Scholar
  29. [29]
    Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990, 28: 183–187.PubMedCrossRefGoogle Scholar
  30. [30]
    Arnold G, Reuter U, Kinze S, Wolf T, Einhaupl KM. Migraine with aura shows gadolinium enhancement which is reversed following prophylactic treatment. Cephalalgia 1998, 18: 644–646.PubMedCrossRefGoogle Scholar
  31. [31]
    Lindner A, Reiners K, Toyka KV. Meningeal hyperperfusion visualized by MRI in a patient with visual hallucinations and migraine. Headache 1996, 36: 53–57.PubMedCrossRefGoogle Scholar
  32. [32]
    Smith M, Cros D, Sheen V. Hyperperfusion with vasogenic leakage by fMRI in migraine with prolonged aura. Neurology 2002, 58: 1308–1310.PubMedCrossRefGoogle Scholar
  33. [33]
    Gorji A. Spreading depression: a review of the clinical relevance. Brain Res Brain Res Rev 2001, 38: 33–60.PubMedCrossRefGoogle Scholar
  34. [34]
    Cui Y, Kataoka Y, Inui T, Mochizuki T, Onoe H, Matsumura K, et al. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats. J Neurosci Res 2008, 86: 929–936.PubMedCrossRefGoogle Scholar
  35. [35]
    Bures J, Buresova O, Krivanek J. The meaning and significance of Leao’s spreading depression. An Acad Bras Cienc 1984, 56: 385–400.PubMedGoogle Scholar
  36. [36]
    Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 2001, 81: 1065–1096.PubMedGoogle Scholar
  37. [37]
    Guedes RC, do Carmo RJ. Influence of ionic disturbances produced by gastric washing on cortical spreading depression. Exp Brain Res 1980, 39: 341–349.PubMedCrossRefGoogle Scholar
  38. [38]
    Marshall WH. Spreading cortical depression of Leao. Physiol Rev 1959, 39: 239–279.PubMedGoogle Scholar
  39. [39]
    Kataoka Y, Morii H, Imamura K, Cui Y, Kobayashi M, Watanabe Y. Control of neurotransmission, behaviour and development, by photo-dynamic manipulation of tissue redox state of brain targets. Eur J Neurosci 2000, 12: 4417–4423.PubMedCrossRefGoogle Scholar
  40. [40]
    Van Harreveld A. Two mechanisms for spreading depression in the chicken retina. J Neurobiol 1978, 9: 419–431.PubMedCrossRefGoogle Scholar
  41. [41]
    Leibowitz DH. The glial spike theory. I. On an active role of neuroglia in spreading depression and migraine. Proc Biol Sci 1992, 250: 287–295.PubMedCrossRefGoogle Scholar
  42. [42]
    Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004, 129: 1045–1056.PubMedCrossRefPubMedCentralGoogle Scholar
  43. [43]
    Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008, 107: 589–601.PubMedCrossRefPubMedCentralGoogle Scholar
  44. [44]
    Gardner-Medwin AR. Possible roles of vertebrate neuroglia in potassium dynamics, spreading depression and migraine. J Exp Biol 1981, 95: 111–127.PubMedGoogle Scholar
  45. [45]
    Hull CD, Vanharreveld A. Absence of conduction of spreading depression through cortical region damaged by Asphyxiation. Am J Physiol 1964, 207: 921–924.PubMedGoogle Scholar
  46. [46]
    Van Harreveld A, Terres G, Dernburg EA. Cortical discontinuity and propagation of spreading depression. Am J Physiol 1956, 184: 233–238.Google Scholar
  47. [47]
    Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 1991, 40: 399–412.PubMedCrossRefGoogle Scholar
  48. [48]
    Puig MV, Artigas F, Celada P. Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 2005, 15: 1–14.PubMedCrossRefGoogle Scholar
  49. [49]
    Puig MV, Celada P, Diaz-Mataix L, Artigas F. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 2003, 13: 870–882.PubMedCrossRefGoogle Scholar
  50. [50]
    Jakab RL, Goldman-Rakic PS. Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J Comp Neurol 2000, 417: 337–348.PubMedCrossRefGoogle Scholar
  51. [51]
    Kawa K. Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 1994, 71: 1935–1947.PubMedGoogle Scholar
  52. [52]
    Roerig B, Katz LC. Modulation of intrinsic circuits by serotonin 5-HT3 receptors in developing ferret visual cortex. J Neurosci 1997, 17: 8324–8338.PubMedGoogle Scholar
  53. [53]
    Hoyer D, Engel G, Kalkman HO. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (−)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol 1985, 118(1–2): 13–23.PubMedCrossRefGoogle Scholar
  54. [54]
    Cui Y, Li QH, Yamada H, Watanabe Y, Kataoka Y. Chronic degeneration of dorsal raphe serotonergic neurons modulates cortical spreading depression: a possible pathophysiology of migraine. J Neurosci Res 2013, 91: 737–744.PubMedCrossRefGoogle Scholar
  55. [55]
    van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41: 701–710.PubMedCrossRefGoogle Scholar
  56. [56]
    Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 1993, 13: 1167–1177.PubMedPubMedCentralGoogle Scholar
  57. [57]
    Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 1997, 17: 785–790.PubMedCrossRefGoogle Scholar
  58. [58]
    Earl NL, McDonald SA, Lowy MT. Efficacy and tolerability of the neurogenic inflammation inhibitor, 4991W93, in the acute treatment of migraine. Cephalalgia 1999, 19: 357–357.Google Scholar
  59. [59]
    Roon KI, Olesen J, Diener HC, Ellis P, Hettiarachchi J, Poole PH, et al. No acute antimigraine efficacy of CP-122,288, a highly potent inhibitor of neurogenic inflammation: Results of two randomized, double-blind, placebo controlled clinical trials. Ann Neurol 2000, 47: 238–241.PubMedCrossRefGoogle Scholar
  60. [60]
    Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, et al. A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 2007, 102: 2118–2131.PubMedCrossRefGoogle Scholar
  61. [61]
    Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Gregoire MC, Jan S, et al. In vivo imaging of brain lesions with [(11)C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. Glia 2007, 55: 1459–1468.PubMedCrossRefGoogle Scholar
  62. [62]
    Boutin H, Chauveau F, Thominiaux C, Gregoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 2007, 48: 573–581.PubMedCrossRefGoogle Scholar
  63. [63]
    Banati RB. Visualising microglial activation in vivo. Glia 2002, 40: 206–217.PubMedCrossRefGoogle Scholar
  64. [64]
    Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19: 312–318.PubMedCrossRefGoogle Scholar
  65. [65]
    Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber MB. Towards a transcriptome definition of microglial cells. Neurogenetics 2004, 5: 95–108.PubMedCrossRefGoogle Scholar
  66. [66]
    Benavides J, Guilloux F, Rufat P, Uzan A, Renault C, Dubroeucq MC, et al. In vivo labelling in several rat tissues of ‘peripheral type’ benzodiazepine binding sites. Eur J Pharmacol 1984, 99: 1–7.PubMedCrossRefGoogle Scholar
  67. [67]
    Cagnin A, Gerhard A, Banati RB. In vivo imaging of neuroinflammation. Eur Neuropsychopharmacol 2002, 12: 581–586.PubMedCrossRefGoogle Scholar
  68. [68]
    Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 2002, 40: 475–486.PubMedCrossRefGoogle Scholar
  69. [69]
    Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000, 123(Pt 11): 2321–2337.PubMedCrossRefGoogle Scholar
  70. [70]
    Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 1995, 15: 5263–5274.PubMedGoogle Scholar
  71. [71]
    Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997, 50: 345–353.PubMedCrossRefGoogle Scholar
  72. [72]
    Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 2006, 37: 1749–1753.PubMedCrossRefGoogle Scholar
  73. [73]
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001, 358: 461–467.PubMedCrossRefGoogle Scholar
  74. [74]
    Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006, 21: 404–412.PubMedCrossRefGoogle Scholar
  75. [75]
    Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006, 66: 1638–1643.PubMedCrossRefGoogle Scholar
  76. [76]
    Ray BS, Wolff HG. Experimental studies on headache — Pain-sensitive structures of the head and their significance in headache. Arch Surg 1940, 41: 813–856.CrossRefGoogle Scholar
  77. [77]
    Ebersberger A, Schaible HG, Averbeck B, Richter F. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann Neurol 2001, 49: 7–13.PubMedCrossRefGoogle Scholar
  78. [78]
    Lambert GA, Michalicek J, Storer RJ, Zagami AS. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia 1999, 19: 631–638.PubMedCrossRefGoogle Scholar
  79. [79]
    Davis KD, Dostrovsky JO. Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res 1988, 454: 89–100.PubMedCrossRefGoogle Scholar
  80. [80]
    Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci 2010, 13: 239–245.PubMedCrossRefPubMedCentralGoogle Scholar
  81. [81]
    Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci 2011, 31: 14204–14217.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Bio-function Dynamics ImagingRIKEN Center for Life Science TechnologiesKobe, HyogoJapan

Personalised recommendations