Advertisement

Neuroscience Bulletin

, Volume 30, Issue 2, pp 191–197 | Cite as

MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease

  • Ning Tian
  • Zeyuan Cao
  • Yan Zhang
Original Article

Abstract

MicroRNA alterations have been reported in patients with Alzheimer’s disease (AD) and AD mouse models. We now report that miR-206 is upregulated in the hippocampal tissue, cerebrospinal fluid, and plasma of embryonic APP/PS1 transgenic mice. The increased miR-206 downregulates the expression of brain-derived neurotrophic factor (BDNF). BDNF is neuroprotective against cell death after various insults, but in embryonic and newborn APP/PS1 mice it is decreased. Thus, a specific microRNA alteration may contribute to AD pathology by downregulating BDNF.

Keywords

miR-206 brain-derived neurotrophic factor APP/PS1 cell death Alzheimer’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Price DL, Sisodia SS, Gandy SE. Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 1995, 8: 268–274.PubMedCrossRefGoogle Scholar
  2. [2]
    Chan AW, Kocerha J. The path to microRNA therapeutics in psychiatric and neurodegenerative disorders. Front Genet 2012, 3: 82.PubMedCentralPubMedCrossRefGoogle Scholar
  3. [3]
    Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer’s disease. Neurobiol Dis 2012, 46: 285–290.PubMedCrossRefGoogle Scholar
  4. [4]
    Delay C, Hebert SS. MicroRNAs and Alzheimer’s disease mouse models: Current insights and future research avenues. Int J Alzheimers Dis 2011, 2011: 894938.PubMedCentralPubMedGoogle Scholar
  5. [5]
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001, 294: 853–858.PubMedCrossRefGoogle Scholar
  6. [6]
    Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004, 7: 113–117.PubMedCrossRefGoogle Scholar
  7. [7]
    Ashraf SI, McLoon AL, Sclarsic SM, Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 2006, 124: 191–205.PubMedCrossRefGoogle Scholar
  8. [8]
    Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452: 896–899.PubMedCrossRefGoogle Scholar
  9. [9]
    Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010, 466: 197–202.PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007, 26: 611–623.PubMedCrossRefGoogle Scholar
  11. [11]
    Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA 2009, 15: 21–32.PubMedCentralPubMedCrossRefGoogle Scholar
  12. [12]
    Meister G. miRNAs get an early start on translational silencing. Cell 2007, 131: 25–28.PubMedCrossRefGoogle Scholar
  13. [13]
    Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008, 455: 64–71.PubMedCentralPubMedCrossRefGoogle Scholar
  14. [14]
    Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455: 58–63.PubMedCrossRefGoogle Scholar
  15. [15]
    Diniz BS, Teixeira AL. Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromolecular Med 2011, 13: 217–222.PubMedCrossRefGoogle Scholar
  16. [16]
    Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 2008, 59: 201–220.PubMedCrossRefGoogle Scholar
  17. [17]
    Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003, 4: 299–309.PubMedCrossRefGoogle Scholar
  18. [18]
    Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006, 361: 1545–1564.PubMedCentralPubMedCrossRefGoogle Scholar
  19. [19]
    Arancibia S, Silhol M, Mouliere F, Meffre J, Hollinger I, Maurice T, et al. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 2008, 31: 316–326.PubMedCrossRefGoogle Scholar
  20. [20]
    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 2009, 15: 331–337.PubMedCentralPubMedCrossRefGoogle Scholar
  21. [21]
    Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, et al. beta-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 2011, 32: 821–833.PubMedCentralPubMedCrossRefGoogle Scholar
  22. [22]
    Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, et al. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 2009, 29: 9321–9329.PubMedCentralPubMedCrossRefGoogle Scholar
  23. [23]
    Kunugi H, Ueki A, Otsuka M, Isse K, Hirasawa H, Kato N, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry 2001, 6: 83–86.PubMedCrossRefGoogle Scholar
  24. [24]
    Tsai SJ, Hong CJ, Liu HC, Liu TY, Hsu LE, Lin CH. Association analysis of brain-derived neurotrophic factor Val66Met polymorphisms with Alzheimer’s disease and age of onset. Neuropsychobiology 2004, 49: 10–12.PubMedCrossRefGoogle Scholar
  25. [25]
    Tsai SJ, Hong CJ, Liu HC, Liu TY, Liou YJ. The brain-derived neurotrophic factor gene as a possible susceptibility candidate for Alzheimer’s disease in a chinese population. Dement Geriatr Cogn Disord 2006, 21: 139–143.PubMedCrossRefGoogle Scholar
  26. [26]
    Olin D, MacMurray J, Comings DE. Risk of late-onset Alzheimer’s disease associated with BDNF C270T polymorphism. Neurosci Lett 2005, 381: 275–278.PubMedCrossRefGoogle Scholar
  27. [27]
    Cui J, Wang Y, Dong Q, Wu S, Xiao X, Hu J, et al. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J Neurosci 2011, 31: 16227–16240.PubMedCrossRefGoogle Scholar
  28. [28]
    Wang Y, Cui J, Sun X, Zhang Y. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 2011, 18: 732–742.PubMedCentralPubMedCrossRefGoogle Scholar
  29. [29]
    Zhang Y, Champagne N, Beitel LK, Goodyer CG, Trifiro M, LeBlanc A. Estrogen and androgen protection of human neurons against intracellular amyloid beta1–42 toxicity through heat shock protein 70. J Neurosci 2004, 24: 5315–5321.PubMedCrossRefGoogle Scholar
  30. [30]
    Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 2002, 156: 519–529.PubMedCentralPubMedCrossRefGoogle Scholar
  31. [31]
    Cui J, Chen Q, Yue X, Jiang X, Gao GF, Yu LC, et al. Galanin protects against intracellular amyloid toxicity in human primary neurons. J Alzheimers Dis 2010, 19: 529–544.PubMedGoogle Scholar
  32. [32]
    Zhang Y, Hong Y, Bounhar Y, Blacker M, Roucou X, Tounekti O, et al. p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 2003, 23: 7385–7394.PubMedGoogle Scholar
  33. [33]
    Zhang Y, Goodyer C, LeBlanc A. Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 2000, 20: 8384–8389.PubMedGoogle Scholar
  34. [34]
    Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann Neurol 1986, 19: 105–111.PubMedCrossRefGoogle Scholar
  35. [35]
    Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 2010, 13: 302–309.PubMedCrossRefGoogle Scholar
  36. [36]
    Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 2011, 14: 347–353.PubMedCrossRefGoogle Scholar
  37. [37]
    Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 2012, 72: 269–277.PubMedCrossRefGoogle Scholar
  38. [38]
    Chen TJ, Wang DC, Chen SS. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J Neurosci Res 2009, 87: 2297–2307.PubMedCrossRefGoogle Scholar
  39. [39]
    Echeverria V, Berman DE, Arancio O. Oligomers of beta-amyloid peptide inhibit BDNF-induced arc expression in cultured cortical Neurons. Curr Alzheimer Res 2007, 4: 518–521.PubMedCrossRefGoogle Scholar
  40. [40]
    Wang DC, Chen SS, Lee YC, Chen TJ. Amyloid-beta at sublethal level impairs BDNF-induced arc expression in cortical neurons. Neurosci Lett 2006, 398: 78–82.PubMedCrossRefGoogle Scholar
  41. [41]
    Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 2008, 28: 11760–11767.Google Scholar
  42. [42]
    Forlenza OV, Diniz BS, Talib LL, Mendonca VA, Ojopi EB, Gattaz WF, et al. Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2009, 28: 507–512.PubMedCrossRefGoogle Scholar
  43. [43]
    Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonca VA, Gattaz WF, et al. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis 2010, 22: 1305–1311.PubMedGoogle Scholar
  44. [44]
    Mrak RE. Neuropathology and the neuroinflammation idea. J Alzheimers Dis 2009, 18: 473–481.PubMedGoogle Scholar
  45. [45]
    Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010, 20 Suppl 2: S265–279.Google Scholar
  46. [46]
    Shruster A, Melamed E, Offen D. Neurogenesis in the aged and neurodegenerative brain. Apoptosis 2010, 15: 1415–1421.PubMedCrossRefGoogle Scholar
  47. [47]
    Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP. Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 2008, 29: 316–326.PubMedCentralPubMedCrossRefGoogle Scholar
  48. [48]
    Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 2011, 198: 351–356.PubMedCrossRefGoogle Scholar
  49. [49]
    Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HP, Diniz BS, et al. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res 2011, 45: 220–224.PubMedCrossRefGoogle Scholar
  50. [50]
    Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 2008, 104: 1433–1439.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Beijing Obstetrics & Gynecology HospitalCapital Medical UniversityBeijingChina
  2. 2.State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
  3. 3.The High School affiliated to Renmin University of ChinaBeijingChina

Personalised recommendations