Neuroscience Bulletin

, Volume 30, Issue 1, pp 134–140

Hyposmia: a possible biomarker of Parkinson’s disease

Review

Abstract

Hyposmia, identified as reduced sensitivity to odor, is a common non-motor symptom of Parkinson’s disease (PD) that antedates the typical motor symptoms by several years. It occurs in ∼90% of early-stage cases of PD. In addition to the high prevalence, the occurrence of hyposmia may also predict a higher risk of PD. Investigations into hyposmia and its relationship with PD may help elucidate the underlying pathogenic mechanisms. This review provides an update of olfactory dysfunction in PD and its potential as a biomarker for this devastating disease.

Keywords

hyposmia Parkinson’s disease olfaction biomarker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Goetz CG. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 2011, 1: a008862.PubMedCrossRefGoogle Scholar
  2. [2]
    Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP. Epidemiology of Parkinson’s disease. J Neurol 2008, 255: 18–32.PubMedCrossRefGoogle Scholar
  3. [3]
    Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis 1975, 28: 493–497.PubMedCrossRefGoogle Scholar
  4. [4]
    Hawkes CH, Shephard BC, Daniel SE. Is Parkinson’s disease a primary olfactory disorder? QJM 1999, 92: 473–480.PubMedCrossRefGoogle Scholar
  5. [5]
    Moran DT, Rowley JC 3rd, Jafek BW, Lovell MA. The fine structure of the olfactory mucosa in man. J Neurocytol 1982, 11: 721–746.PubMedCrossRefGoogle Scholar
  6. [6]
    Breer H. Odor recognition and second messenger signaling in olfactory receptor neurons. Semin Cell Biol 1994, 5: 25–32.PubMedCrossRefGoogle Scholar
  7. [7]
    Carleton A, Rochefort C, Morante-Oria J, Desmaisons D, Vincent JD, Gheusi G, et al. Making scents of olfactory neurogenesis. J Physiol Paris 2002, 96: 115–122.PubMedCrossRefGoogle Scholar
  8. [8]
    Johnson BA, Leon M. Chemotopic odorant coding in a mammalian olfactory system. J Comp Neurol 2007, 503: 1–34.PubMedCentralPubMedCrossRefGoogle Scholar
  9. [9]
    Doty RL. Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 2012, 46: 527–552.PubMedCentralPubMedCrossRefGoogle Scholar
  10. [10]
    Kovács T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 2004, 3: 215–232.PubMedCrossRefGoogle Scholar
  11. [11]
    Lledo PM, Gheusi G, Vincent JD. Information processing in the mammalian olfactory system. Physiol Rev 2005, 85(1): 281–317.PubMedCrossRefGoogle Scholar
  12. [12]
    Doty RL. Handbook of Olfaction and Gustation. New York: Marcel Dekker, 2003: 165–180.CrossRefGoogle Scholar
  13. [13]
    Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988, 318: 876–880.PubMedCrossRefGoogle Scholar
  14. [14]
    Ondo WG. Restless Legs Syndrome: Diagnosis and Treatment. New York: Informa Healthcare, 2008: 15–29.Google Scholar
  15. [15]
    Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopaminemediated. Trends Neurosci 2003, 26: 215–221.PubMedCrossRefGoogle Scholar
  16. [16]
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997, 388: 839–840.PubMedCrossRefGoogle Scholar
  17. [17]
    Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003, 24: 197–211.PubMedCrossRefGoogle Scholar
  18. [18]
    Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013, 9: 13–24.PubMedCrossRefGoogle Scholar
  19. [19]
    Chaudhuri KR, Naidu Y. Early Parkinson’s disease and nonmotor issues. J Neurol 2008, 255: 33–38.PubMedCrossRefGoogle Scholar
  20. [20]
    Braak H, Bohl JR, Müller CM, Rüb U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 2006, 21: 2042–2051.PubMedCrossRefGoogle Scholar
  21. [21]
    Pearce RK, Hawkes CH, Daniel SE. The anterior olfactory nucleus in Parkinson’s disease. Mov Disord 1995, 10: 282–287.Google Scholar
  22. [22]
    Huisman E, Uylings HB, Hoogland PV. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 2004, 19: 687–692.PubMedCrossRefGoogle Scholar
  23. [23]
    Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 2002, 125: 2431–2445.PubMedCrossRefGoogle Scholar
  24. [24]
    Witt M, Bormann K, Gudziol V, Pehlke K, Barth K, Minovi A, et al. Biopsies of olfactory epithelium in patients with Parkinson’s disease. Mov Disord 2009, 24: 906–914.PubMedCrossRefGoogle Scholar
  25. [25]
    Hanson LR, Frey WH 2nd. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 2008, 9: S5.PubMedCentralPubMedCrossRefGoogle Scholar
  26. [26]
    Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 2008, 63: 7–15.PubMedCrossRefGoogle Scholar
  27. [27]
    Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 2005, 113: 1250–1256.PubMedCentralPubMedCrossRefGoogle Scholar
  28. [28]
    Smithson LJ, Kawaja MD. Microglia/macrophage cells in mammalian olfactory nerve fascicles. J Neurosci Res 2010, 88: 858–865.PubMedGoogle Scholar
  29. [29]
    Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O’Brien JT, Brooks DJ, et al. The spectrum of nonmotor symptoms in early Parkinson’s disease. Neurology 2013, 80: 276–281.PubMedCrossRefGoogle Scholar
  30. [30]
    Prediger RD, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN. The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 2006, 202: 391–403.PubMedCrossRefGoogle Scholar
  31. [31]
    Haehner A, Boesveldt S, Berendse HW, Mackay-Sim A, Fleischmann J, Silburn PA, et al. Prevelance of smell loss in Parkinson’s disease-a multicenter study. Parkinsonism Relat Disord 2009, 15: 490–494.PubMedCrossRefGoogle Scholar
  32. [32]
    Kuo YM, Li Z, Jiao Y, Gaborit N, Pani AK, Orrison BM, et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet 2010, 19: 1633–1650.PubMedCrossRefGoogle Scholar
  33. [33]
    Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 1988, 38: 1237–1244.PubMedCrossRefGoogle Scholar
  34. [34]
    Ross GW, Petrovitch H, Abbott RD, Tanner CM, Popper J, Masaki K, et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 2008, 63: 167–173.PubMedCrossRefGoogle Scholar
  35. [35]
    Deeb J, Shah M, Muhammed N, Gunasekera R, Gannon K, Findley LJ, et al. A basic smell test is as sensitive as a dopamine transporter scan: comparison of olfaction, taste and DaTSCAN in the diagnosis of Parkinson’s disease. QJM 2010, 103: 941–952.PubMedCrossRefGoogle Scholar
  36. [36]
    Bohnen NI, Studenski SA, Constantine GM, Moore RY. Diagnostic performance of clinical motor and non-motor tests of Parkinson’s disease: a matched case-control study. Eur J Neurol 2008, 15: 685–691.PubMedCrossRefGoogle Scholar
  37. [37]
    Doty RL, Perl DP, Steele JC, Chen KM, Pierce JD Jr, Reyes P, et al. Odor identification deficit of the Parkinsonism-dementia complex of Guam: equivalence to that of Alzheimer’s and idiopathic Parkinson’s disease. Neurology 1991, 41: 77–80.PubMedCrossRefGoogle Scholar
  38. [38]
    Wenning GK, Shephard B, Hawkes C, Petruckevitch A, Lees A, Quinn N. Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand 1995, 91: 247–250.PubMedCrossRefGoogle Scholar
  39. [39]
    Busenbark KL, Huber SJ, Greer G, Pahwa R, Koller WC. Olfactory function in essential tremor. Neurology 1992, 42: 1631–1632.PubMedCrossRefGoogle Scholar
  40. [40]
    Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters Ech, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004, 56: 173–181.PubMedCrossRefGoogle Scholar
  41. [41]
    Doty RL, Shaman P, Kimmelman CP, Dann MS. University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 1984, 94: 176–178.PubMedCrossRefGoogle Scholar
  42. [42]
    Double KL, Rowe DB, Hayes M, Chan DK, Blackie J, Corbett A, et al. Identifying the pattern of olfactory deficits in Parkinson disease using the brief smell identification test. Arch Neurol 2003, 60: 545–549.PubMedCrossRefGoogle Scholar
  43. [43]
    Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 1997, 22: 39–52.PubMedCrossRefGoogle Scholar
  44. [44]
    Kobayashi M, Saito S, Kobayakama T, Deguchi Y, Costanzo RM. Cross-cultural comparison of data using the odor stick identification test for Japanese (OSIT-J). Chem Senses 2006, 31: 335–342.PubMedCrossRefGoogle Scholar
  45. [45]
    Barz S, Hummel T, Pauli E, Majer M, Lang CJ, Kobal G. Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology 1997, 49: 1424–1431.PubMedCrossRefGoogle Scholar
  46. [46]
    Sobel N, Thomason ME, Stappen I, Tanner CM, Tetrud JW, Bower JM, et al. An impairment in sniffing contributes to the olfactory impairment in Parkinson’s disease. Proc Natl Acad Sci U S A 2001, 98: 4154–4159.PubMedCentralPubMedCrossRefGoogle Scholar
  47. [47]
    Frank RA, Dulay MF, Gesteland RC. Assessment of the Sniff Magnitude Test as a clinical test of olfactory function. Physiol Behav 2003, 78: 195–204.PubMedCrossRefGoogle Scholar
  48. [48]
    Tourbier IA, Doty RL. Sniff magnitude test: relationship to odor identification, detection, and memory tests in a clinic population. Chem Senses 2007, 32: 515–523.PubMedCrossRefGoogle Scholar
  49. [49]
    Baba T, Takeda A, Kikuchi A, Nishio Y, Hirayama K, Haseqawa T, et al. Association of olfactory dysfunction and brain. Metobolism in Parkinson’s disease. Mov Disord 2011, 26: 621–628.PubMedCrossRefGoogle Scholar
  50. [50]
    Berg D. Is pre-motor diagnosis possible? The European experience. Parkinsonism Relat Disord 2012, 18: S195–S198.PubMedCrossRefGoogle Scholar
  51. [51]
    Berg D, Marek K, Ross GW, Poewe W. Defining at-risk populations for Parkinson’s disease: lessons from ongoing studies. Mov Disord 2012, 27: 656–665PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Institutes of Translational Medicine1st Affiliated Hospital of Dalian Medical UniverstiyDalianChina

Personalised recommendations