Neuroscience Bulletin

, Volume 28, Issue 3, pp 291–300 | Cite as

Dorsal and ventral streams across sensory modalities

Review

Abstract

In this review, we describe the current models of dorsal and ventral streams in vision, audition and touch. Available theories take their first steps from the model of Milner and Goodale, which was developed to explain how human actions can be efficiently carried out using visual information. Since then, similar concepts have also been applied to other sensory modalities. We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

Keywords

sensorimotor integration action control perception dorsal stream ventral stream cross-modal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 1992, 15(1): 20–25.PubMedCrossRefGoogle Scholar
  2. [2]
    Milner AD, Goodale MA. The Visual Brain in Action. Oxford: Oxford University Press, 1995.Google Scholar
  3. [3]
    Goodale MA. Transforming vision into action. Vision Res 2011, 51(13): 1567–1587.PubMedCrossRefGoogle Scholar
  4. [4]
    Ingle D. Two visual systems in the frog. Science 1973, 181(104): 1053–1055.PubMedCrossRefGoogle Scholar
  5. [5]
    Schneider GE. Two visual systems. Science 1969, 163(870): 895–902.PubMedCrossRefGoogle Scholar
  6. [6]
    Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 1982, 6(1): 57–77.PubMedCrossRefGoogle Scholar
  7. [7]
    Goodale MA, Milner AD, Jakobson LS, Carey DP. A neurological dissociation between perceiving objects and grasping them. Nature 1991, 349(6305): 154–156.PubMedCrossRefGoogle Scholar
  8. [8]
    McIntosh RD, McClements KI, Dijkerman HC, Birchall D, Milner AD. Preserved obstacle avoidance during reaching in patients with left visual neglect. Neuropsychologia 2004, 42: 1107–1117.PubMedCrossRefGoogle Scholar
  9. [9]
    Thaler L, Goodale MA. Reaction times for allocentric movements are 35 ms slower than reaction times for target-directed movements. Exp Brain Res 2011, 211(2): 313–328.PubMedCrossRefGoogle Scholar
  10. [10]
    Chapman CS, Goodale MA. Obstacle avoidance during online corrections. J Vis 2010, 10(11): 17.PubMedCrossRefGoogle Scholar
  11. [11]
    Striemer CL, Yukovsky J, Goodale MA. Can intention override the “automatic pilot”? Exp Brain Res 2010, 202(3): 623–632.PubMedCrossRefGoogle Scholar
  12. [12]
    Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC. Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 2009, 47(6): 1553–1562.PubMedCrossRefGoogle Scholar
  13. [13]
    Valyear KF, Culham JC, Sharif N, Westwood D, Goodale MA. A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia 2006, 44: 218–228.PubMedCrossRefGoogle Scholar
  14. [14]
    Cavina-Pratesi C, Goodale MA, Culham JC. FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS One 2007, 2(5): e424.PubMedCrossRefGoogle Scholar
  15. [15]
    Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 1994, 4(7): 604–610.PubMedCrossRefGoogle Scholar
  16. [16]
    Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, et al. Perception and action in ‘visual form agnosia’. Brain 1991, 114(1): 405–428.PubMedCrossRefGoogle Scholar
  17. [17]
    James TW, Culham J, Humphrey GK, Milner AD, Goodale MA. Ventral occipital lesions impair object recognition but not objectdirected grasping: an fMRI study. Brain 2003, 126(11): 2463–2475.PubMedCrossRefGoogle Scholar
  18. [18]
    Perenin MT, Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 1988, 111(3): 643–674.PubMedCrossRefGoogle Scholar
  19. [19]
    Weiskrantz L. The Ferrier lecture, 1989. Outlooks for blindsight: explicit methodologies for implicit processes. Proc R Soc Lond B Biol Sci 1990, 239(1296): 247–278.PubMedCrossRefGoogle Scholar
  20. [20]
    Perenin MT, Jeannerod M. Residual vision in cortically blind hemifields. Neuropsychologia 1975, 13(1): 1–7.PubMedCrossRefGoogle Scholar
  21. [21]
    Danckert J, Rossetti Y. Blindsight in action: what can the different sub-types of blind-sight tell us about the control of visually guided actions? Neurosci Biobehav Rev 2005, 29(7): 1035–1046.PubMedCrossRefGoogle Scholar
  22. [22]
    Verhagen L, Dijkerman HC, Grol MJ, Toni I. Perceptuo-motor interactions during prehension movements. J Neurosci 2008, 28(18): 4726–4735.PubMedCrossRefGoogle Scholar
  23. [23]
    Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ, et al. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reachto-grasp actions in humans. J Neurosci 2010, 30(31): 10306–10323.PubMedCrossRefGoogle Scholar
  24. [24]
    Pisella L, Binkofski F, Lasek K, Toni I, Rossetti Y. No doubledissociation between optic ataxia and visual agnosia: multiple substreams for multiple visuo-manual integrations. Neuropsychologia 2006, 44(13): 2734–2748.PubMedCrossRefGoogle Scholar
  25. [25]
    Jeannerod M. The timing of natural prehension movements. J Mot Behav 1984, 16(3): 235–254.PubMedGoogle Scholar
  26. [26]
    Yost WA. Fundamentals of Hearing: An introduction. 3rd ed. San Diego: Academic Press, 1994.Google Scholar
  27. [27]
    Rauschecker JP. Parallel processing in the auditory cortex of primates. Audiol Neurotol 1998, 3: 86–103.CrossRefGoogle Scholar
  28. [28]
    Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 2000, 97(22): 11800–11806.PubMedCrossRefGoogle Scholar
  29. [29]
    Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 1999, 2(12): 1131–1136.PubMedCrossRefGoogle Scholar
  30. [30]
    Alain C, Arnott SR, Hevenor S, Graham S, Grady CL. “What” and “where” in the human auditory system. Proc Natl Acad Sci U S A 2001, 98(21): 12301–12306.PubMedCrossRefGoogle Scholar
  31. [31]
    Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 1995, 268: 111–114.PubMedCrossRefGoogle Scholar
  32. [32]
    Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. Functional specialization in rhesus monkey auditory cortex. Science 2001, 292(5515): 290–293.PubMedCrossRefGoogle Scholar
  33. [33]
    Hafke HZ. Nonconscious control of fundamental voice frequency. J Acoust Soc Am 2008, 123: 273–278.PubMedCrossRefGoogle Scholar
  34. [34]
    Loui P, Guenther FH, Mathys C, Schlaug G. Action-perception mismatch in tone-deafness. Curr Biol 2008, 18(8): R331–332.PubMedCrossRefGoogle Scholar
  35. [35]
    Griffiths TD. Sensory systems: auditory action streams? Curr Biol 2008, 18(9): R387–388.PubMedCrossRefGoogle Scholar
  36. [36]
    Arnott SR, Binns MA, Grady CL, Alain C. Assessing the auditory dual-pathway model in humans. Neuroimage 2004, 22(1): 401–408.PubMedCrossRefGoogle Scholar
  37. [37]
    Lakatos S, McAdams S, Causse R. The representation of auditory source characteristics: simple geometric form. Percept Psychophys 1997, 59(8): 1180–1190.PubMedCrossRefGoogle Scholar
  38. [38]
    Carello C, Anderson KL, Kunkler-Peck AJ. Perception of object length by sound. Psychol Sci 1998, 9(3): 211–214.CrossRefGoogle Scholar
  39. [39]
    Kunkler-Peck AJ, Turvey MT. Hearing shape. J Exp Psychol Hum Percept Perform 2000, 26(1): 279–294.PubMedCrossRefGoogle Scholar
  40. [40]
    Grassi M. Do we hear size or sound? Balls dropped on plates. Percept Psychophys 2005, 67(2): 274–284.PubMedCrossRefGoogle Scholar
  41. [41]
    Klatzky RL, Pai DK, Krotkov EP. Perception of material from contact sounds. Presence — Teleoper & Virtual Env 2000, 9(4): 399–410.CrossRefGoogle Scholar
  42. [42]
    Sedda A, Monaco S, Bottini G, Goodale MA. Integration of visual and auditory information for hand actions: preliminary evidence for the contribution of natural sounds to grasping. Exp Brain Res 2011, 209(3): 365–374.PubMedCrossRefGoogle Scholar
  43. [43]
    Dijkerman HC, de Haan HF. Somatosensory processes subserving perception and action. Behav Brain Sci 2007, 30: 189–239.PubMedCrossRefGoogle Scholar
  44. [44]
    Reed CL, Klatzky RL, Halgren E. What vs. where in touch: an fMRI study. Neuroimage 2005, 25(3): 718–726.PubMedCrossRefGoogle Scholar
  45. [45]
    Reed CL, Caselli RJ, Farah MJ. Tactile agnosia: underlying impairment and implications for normal tactile object recognition. Brain 1996, 119: 875–888.PubMedCrossRefGoogle Scholar
  46. [46]
    Head H, Holmes HG. Sensory disturbances from cerebral lesions. Brain 1911, 34: 102–254.CrossRefGoogle Scholar
  47. [47]
    Paillard J. Le corps situé et le corps identifié. Une approche psychophysiologique de la notion de schéma corporel. Rev Med Suisse Romande 1980, 100: 129–141. (in French)PubMedGoogle Scholar
  48. [48]
    Gallagher S. How the body shapes the mind. Oxford: Oxford University Press, 2005.CrossRefGoogle Scholar
  49. [49]
    Dijkerman HC, de Haan HF. Authors’ response. Somatosensory processes subserving perception and action. Behav Brain Sci 2007, 30: 224–230.CrossRefGoogle Scholar
  50. [50]
    Baumann MA, Fluet MC, Scherberger H. Context-specific grasp movement representation in the macaque anterior intraparietal area. J Neurosci 2009, 29(20): 6436–6448.PubMedCrossRefGoogle Scholar
  51. [51]
    Murata A, Gallese V, Luppino G, Kaseda M, Sakata H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 2000, 83(5): 2580–2601.PubMedGoogle Scholar
  52. [52]
    Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 1990, 83(1): 29–36.PubMedCrossRefGoogle Scholar
  53. [53]
    Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, et al. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 2008, 18(5): 1094–1111.PubMedCrossRefGoogle Scholar
  54. [54]
    Goodale MA, Cant JS. Coming to grips with vision and touch. Behav Brain Sci 2007, 30: 209–210.CrossRefGoogle Scholar
  55. [55]
    Mishkin M. Analogous neural models for tactual and visual learning. Neuropsychologia 1979, 17: 139–151.PubMedCrossRefGoogle Scholar
  56. [56]
    Paillard J. Body schema and body image: A double dissociation in deafferented patients. In: Gantchev GN, Mori S, Massion J (Eds.) Motor Control, Today and Tomorrow. Sofia: Academic Publishing House, 1999.Google Scholar
  57. [57]
    Wernicke C. Das Urwindungssystem des menschlichen Gehirns. Arch Psychiat Nervenkr 1876, 6: 298–326 (in German)CrossRefGoogle Scholar
  58. [58]
    Delay JPL. Les Astéréognosies: Pathologie du Toucher. Paris: Massion, 1935. (in French)Google Scholar
  59. [59]
    Klein R. Zur Symptomatologie des Parietallappens. Z Gesamte Neurol Psy 1931, 135(1): 589–608. (in German)CrossRefGoogle Scholar
  60. [60]
    Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature 1998, 391(6669): 756.PubMedCrossRefGoogle Scholar
  61. [61]
    Kammers MPM, de Vignemont F, Verhagenaand L, Dijkerman HC. The rubber hand illusion in action. Neuropsychologia 2009, 47: 204–211.PubMedCrossRefGoogle Scholar
  62. [62]
    Kammers MPM, Verhagen L, Dijkerman HC, Hogendoorn H, de Vignemont F, Schutter DJLG. Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. J Cog Neurosci 2009, 21(7): 1311–1320.CrossRefGoogle Scholar
  63. [63]
    De Vignemont F. Body schema and body image — Pros and cons. Neuropsychologia 2010, 48: 669–680.PubMedCrossRefGoogle Scholar
  64. [64]
    Kammers MPM, Longo MR, Tsakiris M, Dijkerman HC, Haggard P. Specificity and coherence of body representations. Perception 2009, 38: 1804–1820.PubMedCrossRefGoogle Scholar
  65. [65]
    Hach S, Ishihara M, Keller PE, Schütz-Bosbach S. Hard and fast rules about the body: contributions of the action stream to judging body space. Exp Brain Res 2011, 212: 563–574.PubMedCrossRefGoogle Scholar
  66. [66]
    Anema HA, van Zandvoorta MJE, de Haan EHF, Kappelle LJ, de Kort PLM, Jansen BPW, et al. A double dissociation between somatosensory processing for perception and action. Neuropsychologia 2009, 47(6): 1615–1620.PubMedCrossRefGoogle Scholar
  67. [67]
    Berlucchi G, Aglioti S. The body in the brain revisited. Exp Brain Res 2010, 200: 25–35.PubMedCrossRefGoogle Scholar
  68. [68]
    Tubaldi F, Ansuini C, Tirindelli R, Castiello U. The grasping side of odours. PLoS One 2008, 3(3): e1795.PubMedCrossRefGoogle Scholar
  69. [69]
    Wang QX, Gao EQ, Burkhalter A. Gateways of ventral and dorsal streams in mouse visual cortex. J Neurosci 2011, 31(5): 1905–1918.PubMedCrossRefGoogle Scholar
  70. [70]
    Tankus A, Fried I. Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 2012, 24(3): 600–610.PubMedCrossRefGoogle Scholar
  71. [71]
    Kolster H, Peeters R, Orban GA. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 2010, 30(29): 9801–9820.PubMedCrossRefGoogle Scholar
  72. [72]
    Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci 2000, 4(6): 223–233.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Humanistic Studies-Psychology SectionUniversity of PaviaPaviaItaly

Personalised recommendations