Neuroscience Bulletin

, Volume 28, Issue 2, pp 89–90 | Cite as

Recent progress in understanding the mechanisms of pain and itch

  • Ru-Rong JiEmail author


  1. [1]
    Pizzo PA, Clark NM. Alleviating suffering 101-pain relief in the United States. N Engl J Med 2012, 366: 197–199.PubMedCrossRefGoogle Scholar
  2. [2]
    Lamas D, Rosenbaum L. Painful inequities-palliative care in developing countries. N Engl J Med 2012, 366: 199–201.PubMedCrossRefGoogle Scholar
  3. [3]
    Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci 2006, 7: 535–547.PubMedCrossRefGoogle Scholar
  4. [4]
    Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 2006, 116: 1174–1186.PubMedCrossRefGoogle Scholar
  5. [5]
    Ma Q. Population coding of somatic sensations. Neurosci Bull 2012, 28(2): 91–99.CrossRefGoogle Scholar
  6. [6]
    McNeil B, Dong X. Peripheral mechanisms of itch. Neurosci Bull 2012, 28(2): 100–110.CrossRefGoogle Scholar
  7. [7]
    Liu T, Gao YJ, Ji RR. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 2012, 28(2): 131–144.CrossRefGoogle Scholar
  8. [8]
    Liu T, Ji RR. Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull 2012, 28(2): 145–154.CrossRefGoogle Scholar
  9. [9]
    Dong F, Du YR, Xie W, Strong JA, He XJ, Zhang JM. Increased function of the TRPV1 channel in small sensory neurons after local inflammation or in vitro exposure to the pro-inflammatory cytokine GRO/KC. Neurosci Bull 2012, 28(2): 155–164.CrossRefGoogle Scholar
  10. [10]
    Han Y, Li Y, Xiao X, Liu J, Meng XL, Liu FY, Xing GG, Wan Y. Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull 2012, 28(2): 165–172.CrossRefGoogle Scholar
  11. [11]
    Ding J, Zhang JR, Wang Y, Li CL, Lu D, Guan SM, Chen J. Effects of a non-selective TRPC channel blocker, SKF-96365, on melittin-induced spontaneous persistent nociception and inflammatory pain hypersensitivity. Neurosci Bull 2012, 28(2): 173–181.CrossRefGoogle Scholar
  12. [12]
    Tao YX. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization. Neurosci Bull 2012, 28(2): 111–120.CrossRefGoogle Scholar
  13. [13]
    Guo W, Wang H, Zou S, Dubner R, Ren K. Chemokine signaling involving chemokine (C-C motif) ligand 2 plays a role in descending pain facilitation. Neurosci Bull 2012, 28(2): 193–207.CrossRefGoogle Scholar
  14. [14]
    Zhang X, Bao L. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons. Neurosci Bull 2012, 28(2): 121–130.CrossRefGoogle Scholar
  15. [15]
    Chen HJ, Xie WY, Hu F, Zhang Y, Wang J, Wang Y. Disruption of d-opioid receptor phosphorylation at Threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity. Neurosci Bull 2012, 28(2): 182–192.CrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations