Neuroscience Bulletin

, Volume 28, Issue 2, pp 131–144 | Cite as

Emerging role of Toll-like receptors in the control of pain and itch

  • Tong LiuEmail author
  • Yong-Jing Gao
  • Ru-Rong JiEmail author


Toll-like receptors (TLRs) are germline-encoded pattern-recognition receptors that initiate innate immune responses by recognizing molecular structures shared by a wide range of pathogens, known as pathogen-associated molecular patterns (PAMPs). After tissue injury or cellular stress, TLRs also detect endogenous ligands known as danger-associated molecular patterns (DAMPs). TLRs are expressed in both non-neuronal and neuronal cell types in the central nervous system (CNS) and contribute to both infectious and non-infectious disorders in the CNS. Following tissue insult and nerve injury, TLRs (such as TLR2, TLR3, and TLR4) induce the activation of microglia and astrocytes and the production of the proinflammatory cytokines in the spinal cord, leading to the development and maintenance of inflammatory pain and neuropathic pain. In particular, primary sensory neurons, such as nociceptors, express TLRs (e.g., TLR4 and TLR7) to sense exogenous PAMPs and endogenous DAMPs released after tissue injury and cellular stress. These neuronal TLRs are new players in the processing of pain and itch by increasing the excitability of primary sensory neurons. Given the prevalence of chronic pain and itch and the suffering of affected people, insights into TLR signaling in the nervous system will open a new avenue for the management of clinical pain and itch.


astrocytes microglia Toll-like receptor pain itch danger-associated molecular patterns pathogen-associated molecular patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006, 124: 783–801.PubMedCrossRefGoogle Scholar
  2. [2]
    Mills KH. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 2011, 11: 807–822.PubMedGoogle Scholar
  3. [3]
    Anderson KV, Jurgens G, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 1985, 42: 779–789.PubMedCrossRefGoogle Scholar
  4. [4]
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86: 973–983.PubMedCrossRefGoogle Scholar
  5. [5]
    Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000, 173: 89–97.PubMedCrossRefGoogle Scholar
  6. [6]
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010, 11: 373–384.PubMedCrossRefGoogle Scholar
  7. [7]
    Oosting M, Ter HH, Sturm P, Adema GJ, Kullberg BJ, van der Meer JW, et al. TLR1/TLR2 heterodimers play an important role in the recognition of Borrelia spirochetes. PLoS One 2011, 6: e25998.PubMedCrossRefGoogle Scholar
  8. [8]
    Triantafilou M, Uddin A, Maher S, Charalambous N, Hamm TS, Alsumaiti A, et al. Anthrax toxin evades Toll-like receptor recognition, whereas its cell wall components trigger activation via TLR2/6 heterodimers. Cell Microbiol 2007, 9: 2880–2892.PubMedCrossRefGoogle Scholar
  9. [9]
    Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT, et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 2002, 8: 878–884.PubMedGoogle Scholar
  10. [10]
    Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002, 169: 6668–6672.PubMedGoogle Scholar
  11. [11]
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303: 1529–1531.PubMedCrossRefGoogle Scholar
  12. [12]
    Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA. Microglia recognize double-stranded RNA via TLR3. J Immunol 2006, 176: 3804–3812.PubMedGoogle Scholar
  13. [13]
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413: 732–738.PubMedCrossRefGoogle Scholar
  14. [14]
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004, 303: 1526–1529.PubMedCrossRefGoogle Scholar
  15. [15]
    Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999, 189: 1777–1782.PubMedCrossRefGoogle Scholar
  16. [16]
    Poltorak A, He X, Smirnova I, Liu MY, Van HC, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282: 2085–2088.PubMedCrossRefGoogle Scholar
  17. [17]
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410: 1099–1103.PubMedCrossRefGoogle Scholar
  18. [18]
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408: 740–745.PubMedCrossRefGoogle Scholar
  19. [19]
    Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002, 20: 709–760.PubMedCrossRefGoogle Scholar
  20. [20]
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005, 308: 1626–1629.PubMedCrossRefGoogle Scholar
  21. [21]
    Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor4. J Biol Chem 2001, 276: 10229–10233.PubMedCrossRefGoogle Scholar
  22. [22]
    Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van LG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008, 133: 235–249.PubMedCrossRefGoogle Scholar
  23. [23]
    Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005, 11: 1173–1179.PubMedCrossRefGoogle Scholar
  24. [24]
    Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 2009, 15: 774–780.PubMedCrossRefGoogle Scholar
  25. [25]
    West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010, 467: 972–976.PubMedCrossRefGoogle Scholar
  26. [26]
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Tolllike receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007, 8: 487–496.PubMedCrossRefGoogle Scholar
  27. [27]
    Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002, 298: 1025–1029.PubMedCrossRefGoogle Scholar
  28. [28]
    Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 2002, 270: 169–184.PubMedCrossRefGoogle Scholar
  29. [29]
    Kariko K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004, 279: 12542–12550.PubMedCrossRefGoogle Scholar
  30. [30]
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140: 805–820.PubMedCrossRefGoogle Scholar
  31. [31]
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004, 4: 499–511.PubMedCrossRefGoogle Scholar
  32. [32]
    Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009, 29: 4096–4108.PubMedCrossRefGoogle Scholar
  33. [33]
    Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004, 16: 3–9.PubMedCrossRefGoogle Scholar
  34. [34]
    Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003, 301: 640–643.PubMedCrossRefGoogle Scholar
  35. [35]
    Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011, 34(5): 269–281.PubMedCrossRefGoogle Scholar
  36. [36]
    Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J Neurochem 2010, 114: 13–27.PubMedGoogle Scholar
  37. [37]
    Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010, 58: 253–263.PubMedGoogle Scholar
  38. [38]
    van Noort JM, Bsibsi M. Toll-like receptors in the CNS: implications for neurodegeneration and repair. Prog Brain Res 2009, 175: 139–148.PubMedCrossRefGoogle Scholar
  39. [39]
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009, 139: 267–284.PubMedCrossRefGoogle Scholar
  40. [40]
    Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011. [Epub ahead of print]Google Scholar
  41. [41]
    Suh HS, Brosnan CF, Lee SC. Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol 2009, 336: 63–81.PubMedCrossRefGoogle Scholar
  42. [42]
    Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115: 1599–1608.PubMedCrossRefGoogle Scholar
  43. [43]
    Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006, 129: 3006–3019.PubMedCrossRefGoogle Scholar
  44. [44]
    Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 2006, 116: 456–464.PubMedCrossRefGoogle Scholar
  45. [45]
    Kim D, Lee S, Lee SJ. Toll-like receptors in peripheral nerve injury and neuropathic pain. Curr Top Microbiol Immunol 2009, 336: 169–186.PubMedCrossRefGoogle Scholar
  46. [46]
    Guo LH, Schluesener HJ. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci 2007, 64: 1128–1136.PubMedCrossRefGoogle Scholar
  47. [47]
    Tanga FY, Nutile-McMenemy N, Deleo JA. The CNS role of Tolllike receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005, 102: 5856–5861.PubMedCrossRefGoogle Scholar
  48. [48]
    Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 2007, 282: 14975–14983.PubMedCrossRefGoogle Scholar
  49. [49]
    Obata K, Katsura H, Miyoshi K, Kondo T, Yamanaka H, Kobayashi K, et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem 2008, 105: 2249–2259.PubMedCrossRefGoogle Scholar
  50. [50]
    Sorge RE, LaCroix-Fralish ML, Tuttle AH, Sotocinal SG, Austin JS, Ritchie J, et al. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J Neurosci 2011, 31: 15450–15454.PubMedCrossRefGoogle Scholar
  51. [51]
    Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, et al. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol 2010, 160: 1754–1764.PubMedCrossRefGoogle Scholar
  52. [52]
    Mei XP, Zhou Y, Wang W, Tang J, Wang W, Zhang H, et al. Ketamine depresses Toll-like receptor 3 signaling in spinal microglia in a rat model of neuropathic pain. Neurosignals 2011, 19: 44–53.PubMedCrossRefGoogle Scholar
  53. [53]
    Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 2011, 152: 2881–2891.PubMedCrossRefGoogle Scholar
  54. [54]
    Wu FX, Bian JJ, Miao XR, Huang SD, Xu XW, Gong DJ, et al. Intrathecal siRNA against Toll-like receptor 4 reduces nociception in a rat model of neuropathic pain. Int J Med Sci 2010, 7: 251–259.PubMedCrossRefGoogle Scholar
  55. [55]
    Lan LS, Ping YJ, Na WL, Miao J, Cheng QQ, Ni MZ, et al. Down-regulation of Toll-like receptor 4 gene expression by short interfering RNA attenuates bone cancer pain in a rat model. Mol Pain 2010, 6: 2.PubMedCrossRefGoogle Scholar
  56. [56]
    Kuang X, Huang Y, Gu HF, Zu XY, Zou WY, Song ZB, et al. Effects of intrathecal epigallocatechin gallate, an inhibitor of Tolllike receptor 4, on chronic neuropathic pain in rats. Eur J Pharmacol 2012, 676: 51–56.PubMedCrossRefGoogle Scholar
  57. [57]
    Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 2011, 186: 6417–6426.PubMedCrossRefGoogle Scholar
  58. [58]
    Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 2002, 99: 8360–8365.PubMedCrossRefGoogle Scholar
  59. [59]
    Hokfelt T, Zhang X, Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 1994, 17: 22–30.PubMedCrossRefGoogle Scholar
  60. [60]
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769.PubMedCrossRefGoogle Scholar
  61. [61]
    Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003, 26: 696–705.PubMedCrossRefGoogle Scholar
  62. [62]
    Tao YX. Dorsal horn alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking in inflammatory pain. Anesthesiology 2010, 112: 1259–1265.PubMedCrossRefGoogle Scholar
  63. [63]
    Stucky CL, Gold MS, Zhang X. Mechanisms of pain. Proc Natl Acad Sci U S A 2001, 98: 11845–11846.PubMedCrossRefGoogle Scholar
  64. [64]
    Luo F, Wang JY. Neuronal nociceptive responses in thalamocortical pathways. Neurosci Bull 2009, 25: 289–295.PubMedCrossRefGoogle Scholar
  65. [65]
    Liu MG, Chen J. Roles of the hippocampal formation in pain information processing. Neurosci Bull 2009, 25: 237–266.PubMedCrossRefGoogle Scholar
  66. [66]
    Li HL, Qin LY, Wan Y. Astrocyte: a new star in pain research. Sheng Li Ke Xue Jin Zhan 2003, 34: 45–48.PubMedGoogle Scholar
  67. [67]
    Liu FY, Sun YN, Wang FT, Li Q, Su L, Zhao ZF, et al. Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 2012, 1427: 65–77.PubMedCrossRefGoogle Scholar
  68. [68]
    Suter MR, Wen YR, Decosterd I, Ji RR. Do glial cells control pain? Neuron Glia Biol 2007, 3: 255–268.PubMedCrossRefGoogle Scholar
  69. [69]
    Ji RR, Suter MR. p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007, 3: 33.PubMedCrossRefGoogle Scholar
  70. [70]
    Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010, 7: 482–493.PubMedCrossRefGoogle Scholar
  71. [71]
    Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010, 126: 56–68.PubMedCrossRefGoogle Scholar
  72. [72]
    Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 2009, 30: 581–591.PubMedCrossRefGoogle Scholar
  73. [73]
    Romero-Sandoval EA, Horvath RJ, Deleo JA. Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 2008, 9: 726–734.PubMedGoogle Scholar
  74. [74]
    Zhang FY, Wan Y, Zhang ZK, Light AR, Fu KY. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. J Pain 2007, 8: 110–117.PubMedCrossRefGoogle Scholar
  75. [75]
    Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med 2010, 16: 1267–1276.PubMedCrossRefGoogle Scholar
  76. [76]
    Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368.PubMedCrossRefGoogle Scholar
  77. [77]
    Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 2005, 28: 101–107.PubMedCrossRefGoogle Scholar
  78. [78]
    Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007, 27: 6006–6018.PubMedCrossRefGoogle Scholar
  79. [79]
    Smith HS. Activated microglia in nociception. Pain Physician 2010, 13: 295–304.PubMedGoogle Scholar
  80. [80]
    Zhou D, Chen ML, Zhang YQ, Zhao ZQ. Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J Neurosci 2010, 30: 8042–8047.PubMedCrossRefGoogle Scholar
  81. [81]
    Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci Res 2001, 39: 281–286.PubMedCrossRefGoogle Scholar
  82. [82]
    Ji RR, Gereau RW, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev 2009, 60: 135–148.PubMedCrossRefGoogle Scholar
  83. [83]
    Zhou LJ, Yang T, Wei X, Liu Y, Xin WJ, Chen Y, et al. Brainderived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun 2011, 25: 322–334.PubMedCrossRefGoogle Scholar
  84. [84]
    Xu JT, Xin WJ, Wei XH, Wu CY, Ge YX, Liu YL, et al. p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp Neurol 2007, 204: 355–365.PubMedCrossRefGoogle Scholar
  85. [85]
    Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194.PubMedCrossRefGoogle Scholar
  86. [86]
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438: 1017–1021.PubMedCrossRefGoogle Scholar
  87. [87]
    Li J, Xie W, Zhang JM, Baccei ML. Peripheral nerve injury sensitizes neonatal dorsal horn neurons to tumor necrosis factor-alpha. Mol Pain 2009, 5: 10.PubMedCrossRefGoogle Scholar
  88. [88]
    Zhou LJ, Zhong Y, Ren WJ, Li YY, Zhang T, Liu XG. BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol 2008, 212: 507–514.PubMedCrossRefGoogle Scholar
  89. [89]
    Liu YL, Zhou LJ, Hu NW, Xu JT, Wu CY, Zhang T, et al. Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology 2007, 52: 708–715.PubMedCrossRefGoogle Scholar
  90. [90]
    Park CK, Lu N, Xu ZZ, Liu T, Serhan CN, Ji RR. Resolving TRPV1- and TNF-alpha-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci 2011, 31: 15072–15085.PubMedCrossRefGoogle Scholar
  91. [91]
    Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002, 61: 1013–1021.PubMedGoogle Scholar
  92. [92]
    Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173: 3916–3924.PubMedGoogle Scholar
  93. [93]
    Iliev AI, Stringaris AK, Nau R, Neumann H. Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J 2004, 18: 412–414.PubMedGoogle Scholar
  94. [94]
    Dalpke AH, Schafer MK, Frey M, Zimmermann S, Tebbe J, Weihe E, et al. Immunostimulatory CpG-DNA activates murine microglia. J Immunol 2002, 168: 4854–4863.PubMedGoogle Scholar
  95. [95]
    Butchi NB, Du M, Peterson KE. Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 2010, 58: 650–664.PubMedGoogle Scholar
  96. [96]
    Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, et al. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPSinduced microglia activation. Glia 2005, 52: 78–84.PubMedCrossRefGoogle Scholar
  97. [97]
    Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 2010, 30: 573–582.PubMedCrossRefGoogle Scholar
  98. [98]
    Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 2009, 207: 24–31.PubMedCrossRefGoogle Scholar
  99. [99]
    Cao L, Tanga FY, Deleo JA. The contributing role of CD14 in tolllike receptor 4 dependent neuropathic pain. Neuroscience 2009, 158: 896–903.PubMedCrossRefGoogle Scholar
  100. [100]
    Raghavendra V, Tanga FY, Deleo JA. Complete Freunds adjuvantinduced peripheral inflammation evokes glial activation and proin-flammatory cytokine expression in the CNS. Eur J Neurosci 2004, 20: 467–473.PubMedCrossRefGoogle Scholar
  101. [101]
    Wen YR, Tan PH, Cheng JK, Liu YC, Ji RR. Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 2011, 110: 487–494.PubMedCrossRefGoogle Scholar
  102. [102]
    Matsui T, Svensson CI, Hirata Y, Mizobata K, Hua XY, Yaksh TL. Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase. Anesth Analg 2010, 111: 554–560.PubMedCrossRefGoogle Scholar
  103. [103]
    Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 2011, 21: 353–359.PubMedCrossRefGoogle Scholar
  104. [104]
    Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron 2011, 71: 782–797.PubMedCrossRefGoogle Scholar
  105. [105]
    Gao YJ, Ji RR. Activation of JNK pathway in persistent pain. Neurosci Lett 2008, 437: 180–183.PubMedCrossRefGoogle Scholar
  106. [106]
    Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol 2006, 2: 259–269.PubMedCrossRefGoogle Scholar
  107. [107]
    Jiang F, Liu T, Cheng M, Pang XY, Bai ZT, Zhou JJ, et al. Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch. Eur J Pharmacol 2009, 623: 52–64.PubMedCrossRefGoogle Scholar
  108. [108]
    Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14: 331–336.PubMedCrossRefGoogle Scholar
  109. [109]
    Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 2010, 148: 309–319.PubMedCrossRefGoogle Scholar
  110. [110]
    Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, et al. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 2011, 134: 1127–1139.PubMedCrossRefGoogle Scholar
  111. [111]
    Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glialneuronal interactions contribute to descending pain facilitation. J Neurosci 2008, 28: 10482–10495.PubMedCrossRefGoogle Scholar
  112. [112]
    Ji RR, Strichartz G. Cell signaling and the genesis of neuropathic pain. Sci STKE 2004, 2004: reE14.PubMedCrossRefGoogle Scholar
  113. [113]
    Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 2009, 30: 336–340.PubMedCrossRefGoogle Scholar
  114. [114]
    Wang W, Mei XP, Wei YY, Zhang MM, Zhang T, Wang W, et al. Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain. Brain Behav Immun 2011, 25: 1355–1366.PubMedCrossRefGoogle Scholar
  115. [115]
    Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 2008, 21: 570–579.PubMedCrossRefGoogle Scholar
  116. [116]
    Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev 2009, 60: 57–64.PubMedCrossRefGoogle Scholar
  117. [117]
    Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007, 28: 138–145.PubMedCrossRefGoogle Scholar
  118. [118]
    Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD. Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 2005, 49: 360–374.PubMedCrossRefGoogle Scholar
  119. [119]
    Scumpia PO, Kelly KM, Reeves WH, Stevens BR. Doublestranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 2005, 52: 153–162.PubMedCrossRefGoogle Scholar
  120. [120]
    Kim H, Yang E, Lee J, Kim SH, Shin JS, Park JY, et al. Doublestranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 2008, 124: 480–488.PubMedCrossRefGoogle Scholar
  121. [121]
    Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, van Noort JM. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006, 53: 688–695.PubMedCrossRefGoogle Scholar
  122. [122]
    Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011, 59: 242–255.PubMedCrossRefGoogle Scholar
  123. [123]
    Bowman CC, Rasley A, Tranguch SL, Marriott I. Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43: 281–291.PubMedCrossRefGoogle Scholar
  124. [124]
    Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011, 121: 367–387.CrossRefGoogle Scholar
  125. [125]
    Ji RR, Gao YJ. Astrocyte signaling in neuropathic pain. Glia 2011, 59: S35–36.CrossRefGoogle Scholar
  126. [126]
    Wadachi R, Hargreaves KM. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 2006, 85: 49–53.PubMedCrossRefGoogle Scholar
  127. [127]
    Ferraz CC, Henry MA, Hargreaves KM, Diogenes A. Lipopolysaccharide from Porphyromonas gingivalis sensitizes capsaicinsensitive nociceptors. J Endod 2011, 37: 45–48.PubMedCrossRefGoogle Scholar
  128. [128]
    Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 2011, 90: 759–764.PubMedCrossRefGoogle Scholar
  129. [129]
    Acosta C, Davies A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J Neurosci Res 2008, 86: 1077–1086.PubMedCrossRefGoogle Scholar
  130. [130]
    Liu T, Xu ZZ, Park CK, Berta T, Ji RR. Toll-like receptor 7 mediates pruritus. Nat Neurosci 2010, 13: 1460–1462.PubMedCrossRefGoogle Scholar
  131. [131]
    Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci 2006, 7: 535–547.PubMedCrossRefGoogle Scholar
  132. [132]
    Bieber T. Atopic dermatitis. N Engl J Med 2008, 358: 1483–1494.PubMedCrossRefGoogle Scholar
  133. [133]
    Reich A, Szepietowski JC. Mediators of pruritus in psoriasis. Mediators Inflamm 2007, 2007: 64727.PubMedCrossRefGoogle Scholar
  134. [134]
    Kremer AE, Martens JJ, Kulik W, Rueff F, Kuiper EM, van Buuren HR, et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology 2010, 139: 1008–1018.PubMedCrossRefGoogle Scholar
  135. [135]
    Cassano N, Tessari G, Vena GA, Girolomoni G. Chronic pruritus in the absence of specific skin disease: an update on pathophysiology, diagnosis, and therapy. Am J Clin Dermatol 2010, 11: 399–411.PubMedCrossRefGoogle Scholar
  136. [136]
    Yamaoka H, Sasaki H, Yamasaki H, Ogawa K, Ohta T, Furuta H, et al. Truncal pruritus of unknown origin may be a symptom of diabetic polyneuropathy. Diabetes Care 2010, 33: 150–155.PubMedCrossRefGoogle Scholar
  137. [137]
    Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 2006, 116: 1174–1186.PubMedCrossRefGoogle Scholar
  138. [138]
    Imamachi N, Park GH, Lee H, Anderson DJ, Simon MI, Basbaum AI, et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 2009, 106: 11330–11335.PubMedCrossRefGoogle Scholar
  139. [139]
    Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA. TRPV1-lineage neurons are required for thermal sensation. EMBO J 2011, 30: 582–593.PubMedCrossRefGoogle Scholar
  140. [140]
    Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF. Cellular basis of itch sensation. Science 2009, 325: 1531–1534.PubMedCrossRefGoogle Scholar
  141. [141]
    Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007, 448: 700–703.PubMedCrossRefGoogle Scholar
  142. [142]
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002, 3: 196–200.PubMedCrossRefGoogle Scholar
  143. [143]
    Kim SJ, Park GH, Kim D, Lee J, Min H, Wall E, et al. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A 2011, 108: 3371–3376.PubMedCrossRefGoogle Scholar
  144. [144]
    Schon MP, Schon M, Klotz KN. The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 2006, 126: 1338–1347.PubMedCrossRefGoogle Scholar
  145. [145]
    Kaufman EH, Fryer AD, Jacoby DB. Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs. J Allergy Clin Immunol 2011, 127: 462–469.PubMedCrossRefGoogle Scholar
  146. [146]
    Lai Y, Gallo RL. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets 2008, 8: 144–155.PubMedGoogle Scholar
  147. [147]
    Miller LS. Toll-like receptors in skin. Adv Dermatol 2008, 24: 71–87.PubMedCrossRefGoogle Scholar
  148. [148]
    Meyer T, Stockfleth E, Christophers E. Immune response profiles in human skin. Br J Dermatol 2007, 157(Suppl 2): 1–7.PubMedCrossRefGoogle Scholar
  149. [149]
    Chen J. History of pain theories. Neurosci Bull 2011, 27: 343–350.PubMedCrossRefGoogle Scholar
  150. [150]
    Kini SP, Delong LK, Veledar E, McKenzie-Brown AM, Schaufele M, Chen SC. The impact of pruritus on quality of life: The skin equivalent of pain. Arch Dermatol 2011, 147: 1153–1156.PubMedCrossRefGoogle Scholar
  151. [151]
    Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 2009, 139: 1353–1365.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Institute of Nautical MedicineNantong UniversityNantongChina

Personalised recommendations