Advertisement

Neuroscience Bulletin

, 27:330 | Cite as

The effects of dietary choline

  • Elisabetta Biasi
Review

Abstract

Food intake can influence neuronal functions through different modulators expressed in the brain. The present review is a report through relevant experimental findings on the effects of choline, a nutritional component found in the diet, to identify a safe and effective dietary solution that can offer some protection against neurotoxicity and neurological disorders and that can be implemented in animals and humans in a very short period of time.

Keywords

choline neurotoxicity neuroprotection 

含胆碱饮食的重要性

摘要

k]日常摄取的食物能通过各种脑内表达的调节因子来影响神经功能。 胆碱是常存在于食物中的一种具有多种功能的营养成分。 本文对关于胆碱功能的相关实验结果进行综述, 以制定一个安全有效并能在较短的时间内得以实施的饮食方案来对抗神经毒性和神经系统疾病。

关键词

胆碱 神经毒性 神经保护 

References

  1. [1]
    Guo-Ross SX, Clark S, Montoya DAC, Jones KH, Obernier J, Shetty AK, et al. prenatal choline supplementation protects against postnatal neurotoxicity. j neurosci 2002, 21(195): 1–6.Google Scholar
  2. [2]
    Guo-Ross SX, Jones KH, Shetty AK, Wilson WA, Swartzwelder HS. Prenatal dietary choline availability alters postnatal neurotoxic vulnerability in the adult rat. Neurosci Lett 2003, 341: 161–163.PubMedCrossRefGoogle Scholar
  3. [3]
    Wong-Goodrich SJ, Mellott TJ, Glenn MJ, Blusztajn JK, Williams CL. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus. Neurobiol Dis 2008, 30: 255–269.PubMedCrossRefGoogle Scholar
  4. [4]
    Wong-Goodrich SJ, Glenn MJ, Mellott TJ, Liu YB, Blusztajn JK, Williams CL. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood. Hippocampus 2011, 21(6): 584–608.PubMedCrossRefGoogle Scholar
  5. [5]
    Thomas JD, La Fiette MH, Quinn VR, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol 2000, 22: 703–711.PubMedCrossRefGoogle Scholar
  6. [6]
    Thomas JD, Garrison M, O’Neill TM. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2004, 26: 35–45.PubMedCrossRefGoogle Scholar
  7. [7]
    Thomas JD, Biane JS, O’Bryan KA, O’Neill TM, Dominguez HD. Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci 2007, 121: 120–130.PubMedCrossRefGoogle Scholar
  8. [8]
    Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: Effects of varying the timing of choline administration. Brain Res 2008, 1237: 91–100.PubMedCrossRefGoogle Scholar
  9. [9]
    Thomas JD, Abou JE, Dominguez HD. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol 2009, 31: 303–311.PubMedCrossRefGoogle Scholar
  10. [10]
    Moon J, Chen M, Gandhy SU, Strawderman M, Levitsky DA, Maclean KN, et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci 2010, 124(3): 346–361.PubMedCrossRefGoogle Scholar
  11. [11]
    Guseva MV, Hopkins DM, Scheff SW, Pauly JR. Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. Neurotrauma 2008, 25(8): 975–983.CrossRefGoogle Scholar
  12. [12]
    Meck WH, Williams CL. Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci Biobehav Rev 2003, 27: 385–399.PubMedCrossRefGoogle Scholar
  13. [13]
    Pomytkin NA, Storozheva ZI, Semenova NA, Proshin AT, Sherstnev VV, Varfolomeev SD, et al. Neuroprotective effect of choline succinate in rats with experimental chronic cerebral ischemia evaluated by cognitive ability tests. Izv Akad Nauk Ser Biol 2007, 2: 183–187.PubMedGoogle Scholar
  14. [14]
    Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev 2006, 64(4): 197–203.PubMedCrossRefGoogle Scholar
  15. [15]
    Zeisel SH. Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr 2011, 141(3): 531–534.PubMedCrossRefGoogle Scholar
  16. [16]
    Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A 2010, 107(29): 12834–12839.PubMedCrossRefGoogle Scholar
  17. [17]
    Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 2006, 20(1): 43–49.PubMedCrossRefGoogle Scholar
  18. [18]
    Tomassoni D, Avola R, Mignini F, Parnetti L, Amenta F. Effect of treatment with choline alphoscerate on hippocampus microanatomy and glial reaction in spontaneously hypertensive rats. Brain Res 2006, 1120(1): 183–190.PubMedCrossRefGoogle Scholar
  19. [19]
    Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev 2009, 67(11): 615–623.PubMedCrossRefGoogle Scholar
  20. [20]
    Zeisel SH. Choline: an essential nutrient for humans. Nutrition 2000, 16: 669–671.PubMedCrossRefGoogle Scholar
  21. [21]
    Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 2006, 26: 229–250.PubMedCrossRefGoogle Scholar
  22. [22]
    Buchman AL. The addition of choline to parenteral nutrition. Gastroenetrology 2009, 137(5 Suppl): S119–128.CrossRefGoogle Scholar
  23. [23]
    Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003, 133(5): 1302–1307.PubMedGoogle Scholar
  24. [24]
    A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients, Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B-6, Vitamin B-12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press, 1998: 390–422.Google Scholar
  25. [25]
    Fischer L, da Costa K, Kwock L, Stewart P, Lu T, Stabler S, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr 2007, 85(5): 1275–1285.PubMedGoogle Scholar
  26. [26]
    Xu X, Gammon MD, Zeisel SH, Lee YL, Wetmur JG, Teitelbaum SL, et al. Choline metabolism and risk of breast cancer in a population-based study. FASEB J 2008, 22(6): 2045–2052.PubMedCrossRefGoogle Scholar
  27. [27]
    Lee JE, Giovannucci E, Fuchs CS, Willett WC, Zeisel SH, Cho E. Choline and betaine intake and the risk of colorectal cancer in men. Cancer Epidemiol Biomarkers Prev 2010, 19(3): 884–887.PubMedCrossRefGoogle Scholar
  28. [28]
    Machlin LJ. Hand Book of Vitamins: Nutritional, Biochemical, and Clinical Aspects. New York: Marcel Dekker, 1984: 556.Google Scholar
  29. [29]
    Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res 2008, 49(6): 1187–1194.PubMedCrossRefGoogle Scholar
  30. [30]
    Zeisel SH. Choline and phosphatidylcholine. In: Shils M, Olson JA, Shike M, Ross AC (eds). Modern Nutrition in Health and Disease, 9th ed. Baltimore: Williams & Wilkins, 1999: 513–523.Google Scholar
  31. [31]
    Hollenbeck CB. The importance of being choline. J Am Diet Assoc 2010, 110(8): 1162–1165.PubMedCrossRefGoogle Scholar
  32. [32]
    Bjelland I, Tell GS, Vollset SE, Konstantinova S, Ueland PM. Choline in anxiety and depression: the Hordaland Health Study. Am J Clin Nutr 2009, 90(4): 1056–1060.PubMedCrossRefGoogle Scholar
  33. [33]
    Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res 2009, 88(1): 65–70.PubMedCrossRefGoogle Scholar
  34. [34]
    Mizumori SJY, Patterson TA, Sternberg H, Rosenzweig MR, Bennett EL, Timiras PS. Effects of dietary choline on memory and brain chemistry in aged mice. Neurobiol Aging 1985, 6(1): 51–56.PubMedCrossRefGoogle Scholar
  35. [35]
    Arenda HEA Van Beek, Jurgen AHR Claassen. The cerebrovascular role of the cholinergic neural system in Alzheimer’s disease. Behav Brain Res 2011, 221(2): 537–542.PubMedCrossRefGoogle Scholar
  36. [36]
    Holmes-McNary MQ, Loy R, Mar MH, Albright CD, Zeisel SH. Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Devel Brain Res 1997, 101: 9–16.CrossRefGoogle Scholar
  37. [37]
    Yen CL, Mar MH, Zeisel SH. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J 1999, J13: 135–142.PubMedGoogle Scholar
  38. [38]
    Fisher MC, Zeisel SH, Mar MH, Sadler TW. Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. Teratology 2001, 64: 114–122.PubMedCrossRefGoogle Scholar
  39. [39]
    Tees RC. The influences of sex, rearing environment, and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats. Dev Psychobio 1999, l35: 328–342.CrossRefGoogle Scholar
  40. [40]
    Tees RC, Mohammadi E, Adam TJ. Altering the impact of early rearing on the rat’s spatial memory with pre- and postnatal choline supplementation. Soc Neurosci Abstr 1999, 17: 1401.Google Scholar
  41. [41]
    Albright CD, Friedrich CB, Brown EC, Mar MH, Zeisel SH. Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain Res Dev Brain Res 1999, 115: 123–129.PubMedCrossRefGoogle Scholar
  42. [42]
    Holler T, Cermak JM, Blusztajn JK. Dietary choline supplementation in pregnant rats increases hippocampal phospholipase D activity of the offspring. FASEB J 1996, 10: 1653–1659.PubMedGoogle Scholar
  43. [43]
    Meck W, Williams C. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. Neuroreport 1997, 8: 3045–3051.PubMedCrossRefGoogle Scholar
  44. [44]
    Meck W, Williams C. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 1997, 8: 2831–2835.PubMedCrossRefGoogle Scholar
  45. [45]
    Meck W, Williams C. Perinatal choline supplementation increases the threshold for chunking in spatial memory. Neuroreport 1997, 8: 3053–3059.PubMedCrossRefGoogle Scholar
  46. [46]
    Ricceri L, Berger-Sweeney J. Postnatal choline supplementation in preweanling mice: sexually dimorphic behavioral and neurochemical effects. Behav Neurosci 1998, 112: 1387–1392.PubMedCrossRefGoogle Scholar
  47. [47]
    Sveinbjornsdottir S, Sander JWAS, Upton D, Thompson PJ, Patsalos PN, Hirt D, et al. The excitatory amino acid antagonist D-CPPene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 1993, 16: 165–174.PubMedCrossRefGoogle Scholar
  48. [48]
    Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the non competitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 1994, 51: 199–214.PubMedGoogle Scholar
  49. [49]
    Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999, 20: 201–225.PubMedCrossRefGoogle Scholar
  50. [50]
    Zeisel SH. Choline: needed for normal development of memory. J Am Coll Nutr 2000, 19(5 Suppl): S528–531.Google Scholar
  51. [51]
    Zeisel SH. Nutritional importance of choline for brain development. J Am Coll Nutr 2004, 23(6 Suppl): S621–626.Google Scholar
  52. [52]
    Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 2004, 160: 102–109.PubMedCrossRefGoogle Scholar
  53. [53]
    Zeisel SH. The fetal origins of memory: the role of dietary choline in optimal brain development. J Pediatr 2006, 149(5 Suppl): S131–136.PubMedGoogle Scholar
  54. [54]
    Sanders LM, Zeisel SH. Choline: dietary requirements and role in brain development. Nutr Today 2007, 42(4): 181–186.PubMedCrossRefGoogle Scholar
  55. [55]
    Signore C, Ueland PM, Troendle J, Mills JL. Choline concentrations in human maternal and cord blood and intelligence at 5 y of age. Am J Clin Nutr 2008, 87(4): 896–902.PubMedGoogle Scholar
  56. [56]
    Shaw GM, Finnell RH, Blom HJ, Carmichael SL, Vollset SE, Yang W, et al. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology 2009, 20(5): 714–719.PubMedCrossRefGoogle Scholar
  57. [57]
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999, 2: 266–270.PubMedCrossRefGoogle Scholar
  58. [58]
    Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 1999, 406: 449–460.PubMedCrossRefGoogle Scholar
  59. [59]
    Fisher MC, Zeisel SH, Mar MH, Sadler TW. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J 2002, 16: 619–621.PubMedGoogle Scholar
  60. [60]
    Alonso-Aperte E, Varela-Moreiras G. Brain folates and DNA methylation in rats fed a choline deficient diet or treated with low doses of methotrexate. Int J Vitam Nutr Res 1996, 66: 232–236.PubMedGoogle Scholar
  61. [61]
    Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease. J Pathol 2001, 195: 97–110.PubMedCrossRefGoogle Scholar
  62. [62]
    Reinhart B, Eljanne M, Chaillet JR. Shared role for differentially methylated domains of imprinted genes. Mol Cell Biol 2002, 22: 2089–2098.PubMedCrossRefGoogle Scholar
  63. [63]
    Albright CD, Tsai AY, Friedrich CB, Mar MH, Zeisel SH. Choline availability alters embryonic development of the hippocampus and septum in the rat. Brain Res Dev Brain Res 1999, 113: 13–20.PubMedCrossRefGoogle Scholar
  64. [64]
    Albright CD, Mar MH, Friedrich CB, Brown EC, Zeisel SH. Maternal choline availability alters the localization of p15Ink4B and p27Kip1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. Dev Neurosci 2001, 23: 100–106.PubMedCrossRefGoogle Scholar
  65. [65]
    Guseva MV, Hopkins DM, Pauly JR. An autoradiographic analysis of rat brain nicotinic receptor plasticity following dietary choline modification. Pharmacol Biochem Behav 2006, 84(1): 26–34.PubMedCrossRefGoogle Scholar
  66. [66]
    Tsuneki H, Klink R, Lena C, Korn H, Changeux JP. Calcium mobilization elicited by two types of nicotinic acethylcholine receptors in mouse substantia nigra pars compacta. Eur J Neurosci 2000, 12(7): 2475–2485.PubMedCrossRefGoogle Scholar
  67. [67]
    Patterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000, 61(1): 75–111.CrossRefGoogle Scholar
  68. [68]
    Albuquerque EX, Pereira EF, Mike A, Eisenberg HM, Maelicke A, Alkondon M. Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res 2000, 113(1–2): 131–141.PubMedCrossRefGoogle Scholar
  69. [69]
    Papke RL, Porter Papke JK. Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol 2002, 137: 49–61.PubMedCrossRefGoogle Scholar
  70. [70]
    Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 1997, 9: 2734–2742.PubMedCrossRefGoogle Scholar
  71. [71]
    Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, et al. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 1997, 280(3): 1117–1136.PubMedGoogle Scholar
  72. [72]
    Alkondon M, Braga MF, Pereira EF, Maelicke A, Albuquerque EX. Alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus. Eur J Pharmacol 2000, 393(1–3): 59–67.PubMedCrossRefGoogle Scholar
  73. [73]
    Mike A, Castro NG, Albuquerque EX. Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res 2000, 882(1–2): 155–168.PubMedCrossRefGoogle Scholar
  74. [74]
    Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and dishinibition of neuronal networks. J Neurosci 2000b, 20(1): 66–75.PubMedGoogle Scholar
  75. [75]
    Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 1997, 42(2): 159–163.PubMedCrossRefGoogle Scholar
  76. [76]
    Meyer EM, Tay ET, Zoltewicz JA, Meyers C, King MA, Papke RL, et al. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties. J Pharmacol Exp Ther 1998, 284: 1026–1032.PubMedGoogle Scholar
  77. [77]
    Strahlendorf JC, Acosta S, Miles R, Strahlendorf HK. Choline blocks AMPA-induced dark cell degeneration of Purkinje neurons: potential role of the α7 nicotinic receptor. Brain Res 2001, 901(1–2): 71–78.PubMedCrossRefGoogle Scholar
  78. [78]
    Li Y, Meyer EM, Walker DW, Millard WJ, He YJ, King MA. Alpha7 nicotinic receptor activation inhibits ethanol-induced mitochondrial dysfunction, cytochrome c release and neurotoxicity in primary rat hippocampal neuronal cultures. J Neurochem 2002b, 81: 853–858.PubMedCrossRefGoogle Scholar
  79. [79]
    Jonnala RR, Buccafusco JJ. Relationship between the increased cell surface alpha 7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J Neurosci Res 2002, 66(4): 565–572.CrossRefGoogle Scholar
  80. [80]
    Utsugisawa K, Nagane Y, Obara D, Tohgi H. Overexpression of alpha7 nicotinic acetylcholine receptor prevents G1-arrest and DNA fragmentation in PC12 cells after hypoxia. J Neurochem 2002, 81: 497–505.PubMedCrossRefGoogle Scholar
  81. [81]
    Zanardi A, Leo G, Bigini G, Zoli M. Nicotine and neurodegeneration in ageing. Toxicol Lett 2002, 127: 207–215.PubMedCrossRefGoogle Scholar
  82. [82]
    Mudo G, Belluardo N, Fuxe K. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm 2007, 114(1): 135–147.CrossRefGoogle Scholar
  83. [83]
    Toyohara J, Hashimoto K. α7 Nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in Schizophrenia and Alzheimer’s disease. Open Med Chem J 2010, 4: 37–56.PubMedGoogle Scholar
  84. [84]
    Ferchmin PA, Perez D, Eterovic VA, de Vellis J. Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. J Pharmacol Exp Ther 2003, 305: 1071–1078.PubMedCrossRefGoogle Scholar
  85. [85]
    Morley BJ, Garner LL. Increases in the concentration of brain alpha-bungarotoxin binding sites induced by dietary choline are agedependent. Brain Res 1986, 378(2): 315–319.PubMedCrossRefGoogle Scholar
  86. [86]
    Morley BJ, Fleck DL. A time course and dose-response study of the regulation of brain nicotinic receptors by dietary choline. Brain Res 1987, 421(1–2): 21–29.PubMedCrossRefGoogle Scholar
  87. [87]
    Coutcher JB, Cawley G, Wecker L. Dietary choline supplementation increases the density of nicotine binding sites in rat brain. J Pharm Exp Ther 1992, 262(3): 1128–1132.Google Scholar
  88. [88]
    Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 1996, 382: 363–366.PubMedCrossRefGoogle Scholar
  89. [89]
    Meck WH, Smith RA, Williams CL. Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav Neurosci 1989, 109: 1234–1241.CrossRefGoogle Scholar
  90. [90]
    Williams CL, Meck WH, Heyer DD, Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res 1998, 794: 225–238.PubMedCrossRefGoogle Scholar
  91. [91]
    Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr 1994, 14: 269–296.PubMedCrossRefGoogle Scholar
  92. [92]
    Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr 2008, 87(2): 424–430.PubMedGoogle Scholar
  93. [93]
    Xu X, Gammon MD, Zeisel SH, Bradshaw PT, Wetmur JG, Teitelbaum SL, et al. High intakes of coline and betaine reduce breast cancer mortality in a population-based study. FASEB J 2009, 23(11): 4022–4028.PubMedCrossRefGoogle Scholar
  94. [94]
    Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [(11C)]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging 2010, 37(5): 874–883.PubMedCrossRefGoogle Scholar
  95. [95]
    Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis 2010, 34(1): 3–15.PubMedCrossRefGoogle Scholar
  96. [96]
    Zeisel SH. Importance of methyl donors during reproduction. Am J Clin Nutr 2009, 89(2): S673–677.CrossRefGoogle Scholar
  97. [97]
    Kritchevsky D, Klurfeld DM. Influence of vegetable protein on gallstone formation in hamsters. Am J Clin Nutr 1979, 32: 2174–2176.PubMedGoogle Scholar
  98. [98]
    Gerhard GT, Duell PB. Homocysteine and atherosclerosis. Curr Opin Lipidol 1999, 10: 417–428.PubMedCrossRefGoogle Scholar
  99. [99]
    Olthof MR, Brink EJ, Katan MB, Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionineloading plasma homocysteine concentrations in healthy men. Am J Clin Nutr 2005, 82(1): 111–117.PubMedGoogle Scholar
  100. [100]
    Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 2007, 7: 20.PubMedCrossRefGoogle Scholar
  101. [101]
    Chiuve S, Giovannucci E, Hankinson S, Zeisel SH, Dougherty LW, Willett WC, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr 2007, 86: 1073–1081.PubMedGoogle Scholar
  102. [102]
    Dalmeijer GW, Olthof MR, Verhoef P, Bots ML, van der Schouw YT. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr 2008, 62: 386–394.PubMedCrossRefGoogle Scholar
  103. [103]
    Van Meurs J, Dhonukshe-Rutten RA, Pluijm SM, Van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004, 350: 2033–2041.PubMedCrossRefGoogle Scholar
  104. [104]
    Das S, Gupta K, Gupta A, Gaur SN. Comparison of the efficacy of inhaled budesonide and oral choline in patients with allergic rhinitis. Saudi Med J 2005, 26(3): 421–424.PubMedGoogle Scholar
  105. [105]
    DPhil T, Carr CA, Guimares AR, Worth JL, Navia BA, Gonzalez RG. Brain choline-containing compounds are elevated in HIVpositive patients before the onset of AIDS dementia complex: A proton magnetic resonance spectroscopic study. Neurology 1996, 46: 783–788.Google Scholar
  106. [106]
    Jones KD, Barkley JA, Warner JO. Perinatal nutrition and immunity to infection. Pediatr Allergy Immunol 2010, 21(4 Pt 1): 564–576.PubMedCrossRefGoogle Scholar
  107. [107]
    Chan J, Deng L, Mikael LG, Yan J, Pickell L, Wu Q, et al. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcomes and heart development in mice. Am J Clin Nutr 2010, 91(4): 1035–1043.PubMedCrossRefGoogle Scholar
  108. [108]
    Quintans CJ, Donaldson MJ, Bertolino MN, Pasqualini RS. Birth of two babies using oocytes that were cryopreserved in a cholinebased freezing medium. Hum Reprod 2002, 17(12): 3149–3152.PubMedCrossRefGoogle Scholar
  109. [109]
    Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the atherosclerosis risk in communities (ARIC) study. Nutr J 2009, 8(1): 14.PubMedCrossRefGoogle Scholar
  110. [110]
    Hasler CM. The changing face of functional foods. JACN 2000, 19(5 Suppl): S499–506.Google Scholar
  111. [111]
    Buchman AL, Dubin MD, Moukarzel AA, Jenden DJ, Roch M, Rice KM, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995, 22(5): 1399–1403.PubMedGoogle Scholar
  112. [112]
    Albright CD, Liu R, Bethea TC, da Costa KA, Salganik RI, Zeisel SH. Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J 1996, 10(4): 510–516.PubMedGoogle Scholar
  113. [113]
    Stevens KE, Adams CE, Mellott TJ, Robbins E, Kisley MA. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats. Brain Res 2008, 1237: 84–90.PubMedCrossRefGoogle Scholar
  114. [114]
    da Costa KA, Niculescu MD, Craciunescu CN, Fischer LM, Zeisel SH. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr 2006, 84(1): 88–94.PubMedGoogle Scholar
  115. [115]
    da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr 2005, 81(2): 440–444.PubMedGoogle Scholar
  116. [116]
    Dessau FI, Oleson JJ. Nature of renal changes in acute choline deficiency. Proc Soc Exp Biol Med 1947, 64(3): 278.PubMedGoogle Scholar
  117. [117]
    Klein J, Köppen A, Löffelholz K. Small rises in plasma choline reverse the negative arteriovenous difference of brain choline. J Neurochem 1990, 55(4): 1231–1236.PubMedCrossRefGoogle Scholar
  118. [118]
    Klein J, Gonzalez A, Köppen A, Löffelholz K. Free choline and choline metabolites in rat brain and body fluids: sensitive determination and implications for choline supply to the brain. Neurochem Int 1993, 22(3): 293–300.PubMedCrossRefGoogle Scholar
  119. [119]
    Klein J, Koppen A, Loffelholz K. Regulation of free choline in rat brain: dietary and pharmacological manipulations. Neurochem Int 1998, 32(5–6): 479–485.PubMedCrossRefGoogle Scholar
  120. [120]
    da Costa KA, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J 2006, 20(9): 1336–1344.PubMedCrossRefGoogle Scholar
  121. [121]
    Zeisel SH. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life 2007, 59(6): 380–387.PubMedCrossRefGoogle Scholar
  122. [122]
    Zeisel SH. Genetic polymorphisms in methyl-group metabolism and epigenetics: lessons from humans and mouse models. Brain Res 2008, 1237: 5–11.PubMedCrossRefGoogle Scholar
  123. [123]
    Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 2009, 89(5): S1488–1493.CrossRefGoogle Scholar
  124. [124]
    Zeisel SH. Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. World Rev Nutr Diet 2010, 101: 73–83.PubMedCrossRefGoogle Scholar
  125. [125]
    Niculescu MD, Wu R, Guo Z, da Costa KA, Zeisel SH. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells. Toxicol Sci 2007, 96: 321–326.PubMedCrossRefGoogle Scholar
  126. [126]
    Mellott TJ, Kowall NW, Lopez-Coviella I, Blusztajn JK. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats. Brain Res 2007b, 1151: 1–11.PubMedCrossRefGoogle Scholar
  127. [127]
    Raubenheimer PJ, Nyirenda MJ, Walker BR. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 2006, 55: 2015–2020.PubMedCrossRefGoogle Scholar
  128. [128]
    McCann JC, Hudes M, Ames BN. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev 2006, 30(5): 696–712.PubMedCrossRefGoogle Scholar
  129. [129]
    Cheng RK, Meck WH. Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res 2007, 1186: 242–254.PubMedCrossRefGoogle Scholar
  130. [130]
    Zeisel SH. Is maternal diet supplementation beneficial? Optimal development of infant depends on mother’s diet. Am J Clin Nutr 2009, 89(2): S685–687.CrossRefGoogle Scholar
  131. [131]
    Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci 2007, 1: 7.PubMedGoogle Scholar
  132. [132]
    Brady RJ, Phelps PE, Vaughn JE. Neurogenesis of basal forebrain cholinergic neurons in rat. Dev Brain Res 1989, 47: 81–92.CrossRefGoogle Scholar
  133. [133]
    Semba K, Fibiger HC. Organization of central cholinergic systems. Prog Brain Res 1989, 79: 37–63.PubMedCrossRefGoogle Scholar
  134. [134]
    Loy R, Heyer D, Williams CL, Meck WH. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol 1991, 295: 373–382.PubMedGoogle Scholar
  135. [135]
    Glenn MJ, Kirby ED, Gibson EM, Wong-Goodrich SJ, Mellott TJ, Blusztajn JK, et al. Age-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats. Brain Res 2008, 1237: 110–123.PubMedCrossRefGoogle Scholar
  136. [136]
    Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res 2008, 1237: 124–135.PubMedCrossRefGoogle Scholar
  137. [137]
    Nag N, Mellott TJ, Berger-Sweeney JE. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res 2008, 1237: 101–109.PubMedCrossRefGoogle Scholar
  138. [138]
    Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA, et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science 1991, 254: 1515–1518.PubMedCrossRefGoogle Scholar
  139. [139]
    Fix AS, Wozniak DF, Trex LL, McEwan M, Miller JP, Olney JW. Quantitative analyses of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulated/retrosplenial cortex. Brain Res 1995, 696: 194–204.PubMedCrossRefGoogle Scholar
  140. [140]
    Horvath ZC, Czopf J, Buzsaki G. Research report MK-801-induced neuronal damage in rats. Brain Res 1997, 753: 181–195.PubMedCrossRefGoogle Scholar
  141. [141]
    Noguchi KK, Nemmers B, Farber NB. Age has a similar influence on the susceptibility to NMDA antagonist-induced neurodegeneration in most brain regions. Brain Res Dev Brain Res 2005, 158: 82–91.PubMedCrossRefGoogle Scholar
  142. [142]
    Biasi E. Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre and postadolescent rats. Brain Res 2010, 1362: 117–132.PubMedCrossRefGoogle Scholar
  143. [143]
    Pinto LSNM, Gualberto FAS, Pereira SRC, Barros PA, Franco GC, Ribeiro AM. Dietary restriction protects against chronic-ethanolinduced changes in exploratory behavior in Wistar rats. Brain Res 2006, 1078: 171–181.PubMedCrossRefGoogle Scholar
  144. [144]
    Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002, 82: 1367–1375.PubMedCrossRefGoogle Scholar
  145. [145]
    Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002c, 80(3): 539–547.PubMedCrossRefGoogle Scholar
  146. [146]
    Holmes GL, Yang Y, Liu Z, Cermak JM, Sarkisian MR, Stafstrom CE, et al. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res 2002, 48: 3–13.PubMedCrossRefGoogle Scholar
  147. [147]
    Bartus RT, Dean RL, Goas JA, Lippa AS. Age-related changes in passive avoidance retention: modulation with dietary choline. Science 1980, 209: 301.PubMedCrossRefGoogle Scholar
  148. [148]
    Hung MC, Shibasaki K, Yoshida R, Sato M, Imaizumi K. Learning behaviour and cerebral protein kinase C, antioxidant status, lipid composition in senescence-accelerated mouse: influence of a phosphatidylcholine-vitamin B12 diet. Br J Nutr. 2001, 86(2): 163–171.PubMedCrossRefGoogle Scholar
  149. [149]
    Chung SY, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, et al. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr 1995, 125(6): 1484–1489.PubMedGoogle Scholar
  150. [150]
    Mervis RF. Chronic dietary choline represses age-related loss of dendritic spines in mouse neocortical pyramidal cells. J Neuropathol Exp Neurol 1982, 41: 363.CrossRefGoogle Scholar
  151. [151]
    Ladd SL, Sommer SA, LaBerge S, Toscano W. Effect of phosphatidylcholine on explicit memory. Clin Neuropharm 1993, 16: 540–549.CrossRefGoogle Scholar
  152. [152]
    Levy R. Lecithin in Alzheimer’s disease. Lancet 1982, 2: 671–672.PubMedCrossRefGoogle Scholar
  153. [153]
    Little A, Levy R, Chuaqui-Kidd P, Hand D. A double-blind, placebo controlled trial of high-dose lecithin in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1985, 48: 736–742.PubMedCrossRefGoogle Scholar
  154. [154]
    Buchman AL, Jenden D, Roch M. Plasma free, phospholipidbound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Coll Nutr 1999, 18(6): 598–601.PubMedGoogle Scholar
  155. [155]
    Buchman AL, Awal M, Jenden D, Roch M, Kang SH. The effect of lecithin supplementation on plasma choline concentrations during a marathon. J Am Coll Nutr 2000, 19(6): 768–770.PubMedGoogle Scholar
  156. [156]
    Conlay LA, Wurtman RJ, Blusztajn JK, Covielia IJ, Maher TJ, Evoniuk GE. Decreased plasma choline concentrations in marathon runners. N Engl J Med 1986, 175: 892.Google Scholar
  157. [157]
    Sandage BW, Sabounjian LA, White R, Wurtman RJ. Choline citrate may enhance athletic performance. Physiologist 1992, 35: 236.Google Scholar
  158. [158]
    Von Allworden HN, Horn S, Kahl J, Feldheim W. The influence of lecithin on plasma choline concentrations in triathletes and adolescent runners during exercise. Eur J Appl Physiol 1983, 67: 87–91.CrossRefGoogle Scholar
  159. [159]
    Kumar R, Divekar HM, Gupta V, Srivastava KK. Antistress and adaptogenic activity of lecithin supplementation. J Altern Complement Med 2002, 8(4): 487–492.PubMedCrossRefGoogle Scholar
  160. [160]
    Wecker L, Flynn CJ, Stouse MR, Trommer BA. Choline availability: effects on the toxicity of centrally active drugs. Drug Nutr Interact 1982, 1(2): 125–130.PubMedGoogle Scholar
  161. [161]
    Klatskin G, Krehl WA. The effect of alcohol on the choline requirement. II. Incidence of renal necrosis in weanling rats following short term ingestion of alcohol. J Exp Med 1954, 100(6): 615–627.Google Scholar
  162. [162]
    Adibhatla RM, Hatcher JF, Dempsey RJ. Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem 2002, 80(1): 12–23.PubMedCrossRefGoogle Scholar
  163. [163]
    Fioravanti M, Buckley AE. Citicoline (Cognizin) in the treatment of cognitive impairment. Clin Interv Aging 2006, 1(3): 247–251.PubMedCrossRefGoogle Scholar
  164. [164]
    Parisi V, Coppola G, Centofanti M, Oddone F, Angrisani AM, Ziccardi L, et al. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog Brain Res 2008, 173: 541–554.PubMedCrossRefGoogle Scholar
  165. [165]
    Hurtado O, Lizasoain I, Moro MÁ. Neuroprotection and recovery: recent data at the bench on citicoline. Stroke 2011, 42(1 Suppl): S33–35.PubMedCrossRefGoogle Scholar
  166. [166]
    Secades JJ, Lorenzo JL. Citicoline: pharmacological and clinical review, 2006 update. Methods Find Exp Clin Pharmacol 2006, 28(Suppl B): 1–56.PubMedGoogle Scholar
  167. [167]
    Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Develop Neurosci 2000, 18(4–5): 347–358.CrossRefGoogle Scholar
  168. [168]
    Gibbs RB. Estrogen therapy and cognition: A review of the cholinergic hypothesis. Endocr Rev 2010, 31(2): 224–253.PubMedCrossRefGoogle Scholar
  169. [169]
    Stiliani A, Bittigau P, Felderhoff-Mueser U, Manthey D, Sifringer M, Pesditschek S, et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol 2005, 58(2): 266–276.CrossRefGoogle Scholar
  170. [170]
    Granholm AC, Ford KA, Hyde LA, Bimonte HA, Hunter CL, Nelson M, et al. Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiol Behav 2002, 77(2–3): 371–385.PubMedCrossRefGoogle Scholar
  171. [171]
    Resseguie M, Song J, Niculescu MD, da Costa KA, Randall TA, Zeisel SH. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J 2007, 21(10): 2622–2632.PubMedCrossRefGoogle Scholar
  172. [172]
    Fischer LM, da Costa KA, Kwock L, Galanko J, Zeisel SH. Dietary choline requirements of women: effects of estrogen and genetic variation. Am J Clin Nutr 2010, 92(5): 1113–1119.PubMedCrossRefGoogle Scholar
  173. [173]
    Resseguie ME, da Costa KA, Galanko JA, Patel M, Davis IJ, Zeisel SH. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J Biol Chem 2011, 286(2): 1649–1658.PubMedCrossRefGoogle Scholar
  174. [174]
    Gibbs RB. Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience 2000, 101(4): 931–938.PubMedCrossRefGoogle Scholar
  175. [175]
    Gibbs RB. Effects of estrogen on basal forebrain cholinergic neurons vary as a function of dose and duration of treatment. Brain Res 1997, 757(1): 10–16.PubMedCrossRefGoogle Scholar
  176. [176]
    Nakamura N, Fujita H, Kawata M. Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience 2002, 109: 473–485.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Pharmacology and Cancer BiologyDuke Univesity Medical CenterDurhamUSA
  2. 2.Veterans Affairs Medical CenterDurhamUSA

Personalised recommendations