Advertisement

Neuroscience Bulletin

, Volume 27, Issue 2, pp 115–122 | Cite as

Monocytes and Alzheimer’s disease

  • Yu Feng (冯昱)
  • Lei Li (李蕾)
  • Xiao-Hong Sun (孙晓红)
Minireview

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by extracellular amyloid beta (Aβ) deposition and intracellular neurofibrillary tangle formation. Monocyte is part of the innate immune system and can effectively remove dead cells and debris. It has been suggested that Aβ can recruit monocytes into brain in AD mice, resulting in restriction of cerebral amyloidosis. However, monocyte may act as a double-edged sword, either beneficial (e.g., clearance of Aβ) or detrimental (e.g., secretion of neurotoxic factors). In addition, recent studies indicate that in AD patients, Aβ phagocytosis by monocytes is ineffective. The present review mainly summarized the current knowledge on monocytes and their potential roles in AD.

Keywords

Alzheimer’s disease amyloid beta monocyte inflammation neurotoxic factors 

单核细胞和阿尔茨海默病

摘要

阿尔茨海默病(Alzheimer’s disease, AD)是神经退行性疾病中最常见的类型。 胞外β淀粉样蛋白(amyloid beta, Aβ)的沉积和胞内神经原纤维的缠结是典型的AD神经病理学特征。 单核细胞是天然免疫细胞, 可以有效清除坏死细胞及碎片。 在AD模型鼠上的许多实验研究表明, Aβ可以使单核细胞向大脑募集, 从而限制脑内的淀粉样变性。 然而, 单核细胞也是一把双刃剑: 一方面它可以清除Aβ, 另一方面它又能分泌神经毒性因子, 损伤神经细胞。 此外, 近来也有研究表明, 在AD患者脑内, 单核细胞并不能有效清除Aβ沉积。 本综述主要对单核细胞及其在AD中的潜在角色进行讨论。

关键词

阿尔茨海默病 β淀粉样蛋白 单核细胞 炎症 神经毒性因子 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Selkoe DJ. Defining molecular targets to prevent Alzheimer disease. Arch Neurol 2005, 62(2): 192–195.CrossRefPubMedGoogle Scholar
  2. [2]
    Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 2004, 11(5): 456–467.CrossRefPubMedGoogle Scholar
  3. [3]
    Samandouras G, Teddy PJ, Cadoux-Hudson T, Ansorge O. Amyloid in neurosurgical and neurological practice. J Clin Neurosci 2006, 13(2): 159–167.CrossRefPubMedGoogle Scholar
  4. [4]
    Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B. Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 2000, 6(7): 718–719.CrossRefGoogle Scholar
  5. [5]
    Seta N, Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J Med 2007, 56(2): 41–47.CrossRefPubMedGoogle Scholar
  6. [6]
    Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2005, 7(3): 221–232; discussion 55–62.PubMedGoogle Scholar
  7. [7]
    Hickman SE, El Khoury J. Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2010, 9(2): 168–173.PubMedGoogle Scholar
  8. [8]
    Whitelaw DM, Batho HF. The distribution of monocytes in the rat. Cell Tissue Kinet 1972, 5(3): 215–225.PubMedGoogle Scholar
  9. [9]
    Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311(5757): 83–87.CrossRefPubMedGoogle Scholar
  10. [10]
    Whitelaw DM. Observations on human monocyte kinetics after pulse labeling. Cell Tissue Kinet 1972, 5(4): 311–317.PubMedGoogle Scholar
  11. [11]
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005, 5(12): 953–964.CrossRefPubMedGoogle Scholar
  12. [12]
    Stöhr J, Schindler G, Rothe G, Schmitz G. Enhanced upregulation of the Fc gamma receptor IIIa (CD16a) during in vitro differentiation of ApoE4/4 monocytes. Arterioscler Thromb Vasc Biol 1998, 18(9): 1424–1432.PubMedGoogle Scholar
  13. [13]
    Rothe G, Herr AS, Stohr J, Abletshauser C, Weidinger G, Schmitz G. A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease. Atherosclerosis 1999, 144(1): 251–261.CrossRefPubMedGoogle Scholar
  14. [14]
    Schmitz G, Orso E, Rothe G, Klucken J. Scavenging, signalling and adhesion coupling in macrophages: implications for atherogenesis. Curr Opin Lipidol 1997, 8(5): 287–300.CrossRefPubMedGoogle Scholar
  15. [15]
    Schmitz G, Leuthauser-Jaschinski K, Orso E. Are circulating monocytes as microglia orthologues appropriate biomarker targets for neuronal diseases? Cent Nerv Syst Agents Med Chem 2009, 9(4): 307–330.PubMedGoogle Scholar
  16. [16]
    Lutter D, Ugocsai P, Grandl M, Orso E, Theis F, Lang EW, et al. Analyzing M-CSF dependent monocyte/macrophage differentiation: expression modes and meta-modes derived from an independent component analysis. BMC Bioinformatics 2008, 9: 100.CrossRefPubMedGoogle Scholar
  17. [17]
    Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005, 307(5715): 1630–1634.CrossRefPubMedGoogle Scholar
  18. [18]
    Colton CA, Wilcock DM. Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010, 9(2): 174–191.PubMedGoogle Scholar
  19. [19]
    Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 2010, 7(2): 77–86.CrossRefPubMedGoogle Scholar
  20. [20]
    Kimura S, Sawada T. Understanding the essential role of monocytes in atherosclerosis. Circ J 2010, 74(7): 1292–1293.CrossRefPubMedGoogle Scholar
  21. [21]
    Nilsson J, Nordin Fredrikson G, Schiopu A, Shah PK, Jansson B, Carlsson R. Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease. Curr Pharm Des 2007, 13(10): 1021–1030.CrossRefPubMedGoogle Scholar
  22. [22]
    Randolph GJ. The fate of monocytes in atherosclerosis. J Thromb Haemost 2009, 7Suppl 1: 28–30.CrossRefPubMedGoogle Scholar
  23. [23]
    Chang CC, Wright A, Punnonen J. Monocyte-derived CD1a+ and CD1a dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J Immunol 2000, 165(7): 3584–3591.PubMedGoogle Scholar
  24. [24]
    Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39(1): 151–170.CrossRefPubMedGoogle Scholar
  25. [25]
    Graeber MB, Streit WJ. Perivascular microglia defined. Trends Neurosci 1990, 13(9): 366.CrossRefPubMedGoogle Scholar
  26. [26]
    Soulet D, Rivest S. Microglia. Curr Biol 2008, 18(12): R506–508.CrossRefPubMedGoogle Scholar
  27. [27]
    Schlachetzki JC, Hull M. Microglial activation in Alzheimer’s disease. Curr Alzheimer Res 2009, 6(6): 554–563.CrossRefPubMedGoogle Scholar
  28. [28]
    Aarum J, Sandberg K, Haeberlein SL, Persson MA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A 2003, 100(26): 15983–15988.CrossRefPubMedGoogle Scholar
  29. [29]
    Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, et al. PU.1 expression in microglia. J Neuroimmunol 2000, 104(2): 109–115.CrossRefPubMedGoogle Scholar
  30. [30]
    Ladeby R, Wirenfeldt M, Dalmau I, Gregersen R, Garcia-Ovejero D, Babcock A, et al. Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 2005, 50(2): 121–131.CrossRefPubMedGoogle Scholar
  31. [31]
    Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007, 53(2): 344–354.CrossRefPubMedGoogle Scholar
  32. [32]
    Streit WJ. Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci 2010, 2: 22.PubMedGoogle Scholar
  33. [33]
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local selfrenewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007 10(12): 1538–1543.CrossRefPubMedGoogle Scholar
  34. [34]
    D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29(7): 2089–2102.CrossRefPubMedGoogle Scholar
  35. [35]
    Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 2008, 8(4): 508–518.CrossRefPubMedGoogle Scholar
  36. [36]
    Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009, 6(7): e1000113.CrossRefPubMedGoogle Scholar
  37. [37]
    Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239(4837): 290–292.CrossRefPubMedGoogle Scholar
  38. [38]
    Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999, 58(3): 233–247.CrossRefPubMedGoogle Scholar
  39. [39]
    Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 2009, 4(10): e7475.CrossRefPubMedGoogle Scholar
  40. [40]
    El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13(4): 432–438.CrossRefPubMedGoogle Scholar
  41. [41]
    Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gammatreated microglial cells. Eur J Immunol 1987, 17(9): 1271–1278.CrossRefPubMedGoogle Scholar
  42. [42]
    Panek RB, Benveniste EN. Class II MHC gene expression in microglia. Regulation by the cytokines IFN-gamma, TNF-alpha, and TGF-beta. J Immunol 1995, 154(6): 2846–2854.PubMedGoogle Scholar
  43. [43]
    Shrikant P, Weber E, Jilling T, Benveniste EN. Intercellular adhesion molecule-1 gene expression by glial cells. Differential mechanisms of inhibition by IL-10 and IL-6. J Immunol 1995, 155(3): 1489–1501.PubMedGoogle Scholar
  44. [44]
    Banati RB, Gehrmann J, Czech C, Monning U, Jones LL, Konig G, et al. Early and rapid de novo synthesis of Alzheimer beta A4-amyloid precursor protein (APP) in activated microglia. Glia 1993, 9(3): 199–210.CrossRefPubMedGoogle Scholar
  45. [45]
    Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrowderived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49(4): 489–502.CrossRefPubMedGoogle Scholar
  46. [46]
    Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008, 14(6): 681–687.PubMedGoogle Scholar
  47. [47]
    Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis 2007, 4(6): 406–412.CrossRefPubMedGoogle Scholar
  48. [48]
    Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2005, 2: 22.CrossRefPubMedGoogle Scholar
  49. [49]
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 2008, 451(7179): 720–724.CrossRefPubMedGoogle Scholar
  50. [50]
    McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 1995, 21(2): 195–218.CrossRefPubMedGoogle Scholar
  51. [51]
    Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12(11): 1361–1363.CrossRefPubMedGoogle Scholar
  52. [52]
    Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience 2009, 163(1): 55–72.CrossRefPubMedGoogle Scholar
  53. [53]
    Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010, 244(1): 93–100.CrossRefGoogle Scholar
  54. [54]
    Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 1995, 16(4): 523–530.CrossRefPubMedGoogle Scholar
  55. [55]
    Mackenzie IR, Hao C, Munoz DG. Role of microglia in senile plaque formation. Neurobiol Aging 1995, 16(5): 797–804.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yu Feng (冯昱)
    • 1
  • Lei Li (李蕾)
    • 1
  • Xiao-Hong Sun (孙晓红)
    • 2
  1. 1.Department of Neurology, The First Affiliated HospitalChina Medical UniversityShenyangChina
  2. 2.Department of Neurology, The Fourth Affiliated HospitalChina Medical UniversityShenyangChina

Personalised recommendations