Neuroscience Bulletin

, Volume 27, Issue 2, pp 123–133 | Cite as

Brain expression quantitative trait locus mapping informs genetic studies of psychiatric diseases

  • Chunyu Liu (刘春宇)Email author


Genome-wide association study (GWAS) can be used to identify genes that increase the risk of psychiatric diseases. However, much of the disease heritability is still unexplained, suggesting that there are genes to be discovered. Functional annotation of the genetic variants may increase the power of GWAS to identify disease genes, by providing prior information that can be used in Bayesian analysis or in reducing the number of tests. Expression quantitative trait loci (eQTLs) are genomic loci that regulate gene expression. Genetic mapping of eQTLs can help reveal novel functional effects of thousands of single nucleotide polymorphisms (SNPs). The present review mainly focused on the current knowledge on brain eQTL mapping, and discussed some major methodological issues and their possible solutions. The frequently ignored problems of batch effects, covariates, and multiple testing were emphasized, since they can lead to false positives and false negatives. The future application of eQTL data in GWAS analysis was also discussed.


genome-wide association study brain psychiatric diseases expression quantitative trait loci genetics single nucleotide polymorphism 



全基因组关联分析(genome-wide association study, GWAS)是一种在人类全基因组范围内寻找与疾病相关的序列变异的方法, 它也是寻找精神疾病易感基因的一个有力工具。 然而, 疾病遗传力的来源在很大程度上仍未知, 期待将来的研究能发现更多的疾病易感基因。 对遗传变异生物学功能的了解能提高GWAS发现新易感基因的效能。 表达数量性状遗传位点(expression quantitative trait loci, eQTLs)是指一些能调节基因表达水平的位点。 eQTL作图法可揭示众多单核苷酸多态(single nucleotide polymorphisms, SNPs)的未知生物学功能。 本综述主要回顾了脑组织中eQTL的研究现状, 并对eQTL定位方法的局限性及相应的对策进行了讨论。 此外, 对在实际研究中经常被忽略的一些能导致假阳性和假阴性关联结果的问题(例如批次效应、 协变量和多重测试)进行了探讨。 最后, 对eQTL研究在GWAS 分析中的应用进行了展望。


全基因组关联分析 大脑 精神疾病 表达数量性状遗传位点 遗传学 单核苷酸多态 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996, 276(4): 293–299.CrossRefPubMedGoogle Scholar
  2. [2]
    McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008, 30: 67–76.CrossRefPubMedGoogle Scholar
  3. [3]
    Piletz JE, Zhang X, Ranade R, Liu C. Database of genetic studies of bipolar disorder. Psychiatr Genet 2010, 21(2): 57–68.CrossRefGoogle Scholar
  4. [4]
    International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460(7256): 748–752.PubMedGoogle Scholar
  5. [5]
    Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008, 40(9): 1056–1058.CrossRefPubMedGoogle Scholar
  6. [6]
    Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2010. [Epub ahead of print]Google Scholar
  7. [7]
    Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, et al. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 2011, 16(1): 2–4.CrossRefPubMedGoogle Scholar
  8. [8]
    Psychiatric GWAS Consortium Steering Committee. A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 2009, 14(1): 10–17.CrossRefGoogle Scholar
  9. [9]
    Vineis P, Pearce N. Missing heritability in genome-wide association study research. Nat Rev Genet 2010, 11(8): 589.CrossRefPubMedGoogle Scholar
  10. [10]
    Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010, 11(6): 446–450.CrossRefPubMedGoogle Scholar
  11. [11]
    Goldstein DB. Common genetic variation and human traits. N Engl J Med 2009, 360(17): 1696–1698.CrossRefPubMedGoogle Scholar
  12. [12]
    Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations, one mutation, multiple disorders. Trends Genet 2009, 25(12): 528–535.CrossRefPubMedGoogle Scholar
  13. [13]
    Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009, 66(9): 947–956.CrossRefPubMedGoogle Scholar
  14. [14]
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007, 39(2): 207–211.CrossRefPubMedGoogle Scholar
  15. [15]
    Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: A review of statistical methods and recommendations for their application. Am J Hum Genet 2010, 86(1): 6–22.CrossRefPubMedGoogle Scholar
  16. [16]
    Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31(13): 3812–3814.CrossRefPubMedGoogle Scholar
  17. [17]
    Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002, 30(17): 3894–3900.CrossRefPubMedGoogle Scholar
  18. [18]
    Jegga AG, Gowrisankar S, Chen J, Aronow BJ. PolyDoms: a whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Res 2007, 35 (Database issue): D700–D706.CrossRefPubMedGoogle Scholar
  19. [19]
    Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009, 106(23): 9362–9367.CrossRefPubMedGoogle Scholar
  20. [20]
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1): 92–105.CrossRefPubMedGoogle Scholar
  21. [21]
    Gaidatzis D, van NE, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007, 8: 69.CrossRefPubMedGoogle Scholar
  22. [22]
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39(10): 1278–1284.CrossRefPubMedGoogle Scholar
  23. [23]
    Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 2006, 16(5): 460–471.CrossRefPubMedGoogle Scholar
  24. [24]
    Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 2005, 123(6): 1133–1146.CrossRefPubMedGoogle Scholar
  25. [25]
    Rockman MV, Kruglyak L. Genetics of global gene expression. Nat Rev Genet 2006, 7(11): 862–872.CrossRefPubMedGoogle Scholar
  26. [26]
    Schwartz D. Genetic studies on mutant enzymes in maize. III. Control of gene action in the synthesis of pH 7.5 Esterase. Genetics 1962, 47(11): 1609–1615.PubMedGoogle Scholar
  27. [27]
    Damerval C, Maurice A, Josse JM, de Vienne D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 1994, 137(1): 289–301.PubMedGoogle Scholar
  28. [28]
    Jansen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet 2001, 17(7): 388–391.CrossRefPubMedGoogle Scholar
  29. [29]
    Cheung VG, Spielman RS. Genetics of human gene expression: mapping DNA variants that influence gene expression. Nat Rev Genet 2009, 10(9): 595–604.CrossRefPubMedGoogle Scholar
  30. [30]
    Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT. Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005, 437(7063): 1365–1369.CrossRefPubMedGoogle Scholar
  31. [31]
    Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S, et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004, 75(6): 1094–1105.CrossRefPubMedGoogle Scholar
  32. [32]
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004, 430(7001): 743–747.CrossRefPubMedGoogle Scholar
  33. [33]
    Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM. Gene-expression variation within and among human populations. Am J Hum Genet 2007, 80(3): 502–509.CrossRefPubMedGoogle Scholar
  34. [34]
    Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, et al. Genome-wide associations of gene expression variation in humans. PLoS Genet 2005, 1(6): 695–704.CrossRefGoogle Scholar
  35. [35]
    Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007, 315(5813): 848–853.CrossRefPubMedGoogle Scholar
  36. [36]
    Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 2008, 4(10): e1000214.CrossRefPubMedGoogle Scholar
  37. [37]
    Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 2008, 82(3): 631–640.CrossRefPubMedGoogle Scholar
  38. [38]
    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008, 6(5): 1020–1032.CrossRefGoogle Scholar
  39. [39]
    Wheeler HE, Metter EJ, Tanaka T, Absher D, Higgins J, Zahn JM, et al. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging. PLoS Genet 2009, 5(10): e1000685.CrossRefPubMedGoogle Scholar
  40. [40]
    Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet 2007, 39(10): 1202–1207.CrossRefPubMedGoogle Scholar
  41. [41]
    Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448(7152): 470–473.CrossRefPubMedGoogle Scholar
  42. [42]
    Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature 2008, 452(7186): 423–428.CrossRefPubMedGoogle Scholar
  43. [43]
    Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN, et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 2008, 6(12): 2869–2879.CrossRefGoogle Scholar
  44. [44]
    Liu C, Cheng L, Badner JA, Zhang D, Craig DW, Redman M, et al. Whole-genome association mapping of gene expression in the human prefrontal cortex. Mol Psychiatry 2010, 15(8): 779–784.CrossRefPubMedGoogle Scholar
  45. [45]
    Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L, et al. A survey of genetic human cortical gene expression. Nat Genet 2007, 39(12): 1494–1499.CrossRefPubMedGoogle Scholar
  46. [46]
    Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, et al. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 2009, 84(4): 445–458.CrossRefPubMedGoogle Scholar
  47. [47]
    Iwamoto K, Bundo M, Kato T. Altered expression of mitochondriarelated genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005, 14(2): 241–253.CrossRefPubMedGoogle Scholar
  48. [48]
    Mexal S, Berger R, Adams CE, Ross RG, Freedman R, Leonard S. Brain pH has a significant impact on human postmortem hippocampal gene expression profiles. Brain Res 2006, 1106(1): 1–11.CrossRefPubMedGoogle Scholar
  49. [49]
    Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8(1): 118–127.CrossRefPubMedGoogle Scholar
  50. [50]
    Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 2007, 3(9): 1724–1735.CrossRefPubMedGoogle Scholar
  51. [51]
    Modrek B, Resch A, Grasso C, Lee C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 2001, 29(13): 2850–2859.CrossRefPubMedGoogle Scholar
  52. [52]
    Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, et al. Genome-wide survey of human alternative premRNA splicing with exon junction microarrays. Science 2003, 302(5653): 2141–2144.CrossRefPubMedGoogle Scholar
  53. [53]
    Clark TA, Schweitzer AC, Chen TX, Staples MK, Lu G, Wang H, et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 2007, 8(4): R64.CrossRefPubMedGoogle Scholar
  54. [54]
    Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009, 62(4): 494–509.CrossRefPubMedGoogle Scholar
  55. [55]
    Xu Q, Modrek B, Lee C. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 2002, 30(17): 3754–3766.CrossRefPubMedGoogle Scholar
  56. [56]
    Kwan T, Benovoy D, Dias C, Gurd S, Serre D, Zuzan H, et al. Heritability of alternative splicing in the human genome. Genome Res 2007, 17(8): 1210–1218.CrossRefPubMedGoogle Scholar
  57. [57]
    Nembaware V, Lupindo B, Schouest K, Spillane C, Scheffler K, Seoighe C. Genome-wide survey of allele-specific splicing in humans. BMC Genomics 2008, 9: 265.CrossRefPubMedGoogle Scholar
  58. [58]
    Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010, 464(7289): 773–777.CrossRefPubMedGoogle Scholar
  59. [59]
    Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010, 464(7289): 768–772.CrossRefPubMedGoogle Scholar
  60. [60]
    Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, et al. Regulation of RNA splicing by the methylationdependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 2005, 102(49): 17551–17558.CrossRefPubMedGoogle Scholar
  61. [61]
    Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, Morita Y, et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A 2009, 106(37): 15873–15878.CrossRefPubMedGoogle Scholar
  62. [62]
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7): 621–628.CrossRefPubMedGoogle Scholar
  63. [63]
    Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006, 7: 3.CrossRefPubMedGoogle Scholar
  64. [64]
    Alberts R, Terpstra P, Li Y, Breitling R, Nap JP, Jansen RC. Sequence polymorphisms cause many false cis eQTLs. PLoS One 2007, 2(7): e622.CrossRefPubMedGoogle Scholar
  65. [65]
    Duan S, Zhang W, Bleibel WK, Cox NJ, Dolan ME. SNPin-Probe_1.0: a database for filtering out probes in the Affymetrix GeneChip human exon 1.0 ST array potentially affected by SNPs. Bioinformation. 2008, 2(10): 469–470.PubMedGoogle Scholar
  66. [66]
    Gamazon ER, Zhang W, Dolan ME, Cox NJ. Comprehensive survey of SNPs in the Affymetrix exon array using the 1000 Genomes dataset. PLoS One 2010, 5(2): e9366.CrossRefPubMedGoogle Scholar
  67. [67]
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320(5881): 1344–1349.CrossRefPubMedGoogle Scholar
  68. [68]
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9): 1509–1517.CrossRefPubMedGoogle Scholar
  69. [69]
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1): 57–63.CrossRefPubMedGoogle Scholar
  70. [70]
    Heap GA, Yang JH, Downes K, Healy BC, Hunt KA, Bockett N, et al. Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Hum Mol Genet 2010, 19(1): 122–134.CrossRefPubMedGoogle Scholar
  71. [71]
    Stevens CF. Neuronal diversity: too many cell types for comfort? Curr Biol 1998, 8(20): R708–R710.CrossRefPubMedGoogle Scholar
  72. [72]
    Giger T, Khaitovich P, Somel M, Lorenc A, Lizano E, Harris LW, et al. Evolution of neuronal and endothelial transcriptomes in primates. Genome Biol Evol 2010, 2: 284–292.CrossRefPubMedGoogle Scholar
  73. [73]
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008, 28(1): 264–278.CrossRefPubMedGoogle Scholar
  74. [74]
    Nielsen JA, Maric D, Lau P, Barker JL, Hudson LD. Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 2006, 26(39): 9881–9891.CrossRefPubMedGoogle Scholar
  75. [75]
    Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A 2004, 101(22): 8384–8389.CrossRefPubMedGoogle Scholar
  76. [76]
    Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 2006, 9(1): 99–107.CrossRefPubMedGoogle Scholar
  77. [77]
    Bernard R, Kerman IA, Meng F, Evans SJ, Amrein I, Jones EG, et al. Gene expression profiling of neurochemically defined regions of the human brain by in situ hybridization-guided laser capture microdissection. J Neurosci Methods 2009, 178(1): 46–54.CrossRefPubMedGoogle Scholar
  78. [78]
    Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 1999, 5(1): 117–122.CrossRefPubMedGoogle Scholar
  79. [79]
    Grimm J, Mueller A, Hefti F, Rosenthal A. Molecular basis for catecholaminergic neuron diversity. Proc Natl Acad Sci U S A 2004, 101(38): 13891–13896.CrossRefPubMedGoogle Scholar
  80. [80]
    Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005, 14(13): 1709–1725.CrossRefPubMedGoogle Scholar
  81. [81]
    Greene JG, Dingledine R, Greenamyre JT. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in Parkinsonism. Neurobiol Dis 2005, 18(1): 19–31.CrossRefPubMedGoogle Scholar
  82. [82]
    Rong Y, Wang T, Morgan JI. Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. Brain Res Mol Brain Res 2004, 132(2): 128–145.CrossRefPubMedGoogle Scholar
  83. [83]
    Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 2006, 7(2): 67–80.CrossRefPubMedGoogle Scholar
  84. [84]
    Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 2000, 97(20): 11038–11043.CrossRefPubMedGoogle Scholar
  85. [85]
    Stansberg C, Vik-Mo AO, Holdhus R, Breilid H, Srebro B, Petersen K, et al. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation. BMC Genomics 2007, 8: 94.CrossRefPubMedGoogle Scholar
  86. [86]
    Khaitovich P, Muetzel B, She XW, Lachmann M, Hellmann I, Dietzsch J, et al. Regional patterns of gene expression in human and chimpanzee brains. Genome Research 2004, 14(8): 1462–1473.CrossRefPubMedGoogle Scholar
  87. [87]
    Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci 2008, 11(11): 1271–1282.CrossRefPubMedGoogle Scholar
  88. [88]
    Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 2010, 6(4): e1000888.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral NeuroscienceThe University of ChicagoChicagoUSA

Personalised recommendations