Advertisement

Neuroscience Bulletin

, 27:69 | Cite as

Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans

  • Yin-Xia Li (李隐侠)
  • Yang Wang (汪洋)
  • Ya-Ou Hu (胡亚欧)
  • Ji-Xiang Zhong (仲纪祥)
  • Da-Yong Wang (王大勇)Email author
Original Article

Abstract

Objective

To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other.

Methods

The assay system for assessing the integrative response to 2 reciprocally-inhibitory sensory stimuli was modulated by changing the metal ion barrier. Moreover, the hen-1, ttx-3 and casy-1 mutants having known defects in integrative response were used to evaluate the modulated assay systems. Based on the examined assay systems, new genes possibly involved in the sensory integration control were identified.

Results

In the presence of different metal ion barriers and diacetyl, locomotion behaviors, basic movements, pan-neuronal, cholinergic and GABAergic neuronal GFP expressions, neuronal development, structures of sensory neurons and interneurons, and stress response of nematodes in different regions of examined assay systems were normal, and chemotaxis toward different concentrations of diacetyl and avoidance of different concentrations of metal ions were inhibited. In the first group, most of the nematodes moved to diacetyl by crossing the barrier of Fe2+, Zn2+, or Mn2+. In the second group, almost half of the nematodes moved to diacetyl by crossing the barrier of Ag+, Cu2+, Cr2+, or Cd2+. In the third group, only a small number of nematodes moved to diacetyl by crossing the barrier of Pb2+ or Hg2+. Moreover, when nematodes encountered different metal ion barriers during migration toward diacetyl, the percentage of nematodes moving back and then turning and that of nematodes moving straight to diacetyl were very different. With the aid of examined assay systems, it was found that mutations of fsn-1 that encodes a F-box protein, and its target scd-2 that encodes a receptor tyrosine kinase, caused severe defects in integrative response, and the sensory integration defects of fsn-1 mutants were obviously inhibited by scd-2 mutation.

Conclusion

Based on the nematode behaviors in examined assay systems, 3 groups of assay systems were obtained. The first group may be helpful in evaluating or identifying the very subtle deficits in sensory integration, and the third group may be useful for the final confirmation of sensory integration defects of mutants identified in the first or the second group of assay systems. Furthermore, the important association of sensory integration regulation with stabilization or destabilization of synaptic differentiation may exist in C. elegans.

Keywords

sensory integration; paired stimuli assay system; metal ion barrier C. elegans 

秀丽线虫对两种相互抑制刺激信号进行感觉整合分析系统的改进

摘要

目的

本研究旨在对秀丽线虫针对两种相互抑制刺激信号进行感觉信号整合的分析体系进行改进。

方法

在分析体系中, 尝试通过改变金属离子墙类型来改变动物对两种相互抑制刺激信号的整合。 此外, 用3种已经被证实有感觉信号整合缺陷的hen-1ttx-3casy-3突变体评估调整后的分析体系。 借助新建立的分析体系, 进一步鉴定可能参与动物感觉信号整合的基因。

结果

在分析系统不同区域, 秀丽线虫的运动行为、 基本运动能力、 神经发育与应激反应均正常。 各种浓度的金属离子墙能抑制线虫对不同浓度丁二酮的趋向性。 此外, 各种浓度的丁二酮也能抑制线虫对不同浓度金属离子的规避性。 大多数的秀丽线虫越过Fe2+、 Zn2+或Mn2+墙趋向丁二酮(第1 类)约有一半数量的秀丽线虫会越过Ag+、 Cu2+、 Cr2+或Cd2+墙趋向丁二酮(第2类);只有很少数量的秀丽线虫会越过Pb2+或Hg2+墙趋向丁二酮(第3类)。 此外, 在向丁二酮趋向过程中, 当秀丽线虫遇到不同金属离子墙时, 其做出向后运动而后趋向于丁二酮的比例与其直接趋向于丁二酮运动的比例呈现出差异。 借助于建立的分析体系, 可观察到编码F-box蛋白的fsn-1基因的突变体以及编码其靶点酪氨酸激酶受体的scd-2基因的突变体均表现出严重的感觉信号整合缺陷, 且fsn-1突变体的感觉信号整合缺陷可显著被scd-2突变抑制。

结论

基于模型中的动物感觉信号整合行为, 本研究中使用的分析系统可分为3类。 第1类分析系统可能有助于评估或鉴定突变体中微弱的感觉信号整合缺陷, 而第3类分析系统可能有助于进一步确认第1类及第2类分析系统鉴定的感觉信号整合缺陷。 此外, 秀丽线虫中突触组装分化的稳定或去稳定化可能与感觉信号整合的调控存在密切的联系。

关键词

感觉信号整合 成对刺激信号 分析系统 金属墙 秀丽线虫 

References

  1. [1]
    Joiner MA, Griffith LC. Visual input regulates circuit configuation in courtship conditioning of Drosophila melanogaster. Learn Memory 2000, 7: 32–42.CrossRefGoogle Scholar
  2. [2]
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001, 24: 167–202.CrossRefPubMedGoogle Scholar
  3. [3]
    Koechlin E, Hyafil A. Anterior prefrontal function and the limits of human decision-making. Science 2007, 318: 594–598.CrossRefPubMedGoogle Scholar
  4. [4]
    Zhang K, Guo J, Peng Y, Xi W, Guo A. Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 2007, 316: 1901–1904.CrossRefPubMedGoogle Scholar
  5. [5]
    White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Tran Royal Soc B: Biol Sci 1986, 314: 1–340.CrossRefGoogle Scholar
  6. [6]
    Bargmann CI. Genetic and cellular analysis of behavior in C. elegans. Annu Rev Neurosci 1993, 16: 47–71.CrossRefPubMedGoogle Scholar
  7. [7]
    Bargmann CI, Kaplan JM. Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci 1998, 21: 279–308.CrossRefPubMedGoogle Scholar
  8. [8]
    Bargmann CI, Mori I. Chemotaxis and thermotaxis. In C. elegans II. Edited by: Riddle DL, Blumenthal T, Meyer BJ, Priess JR. New York: Cold Spring Harbor Laboratory Press, 1997: 717–737.Google Scholar
  9. [9]
    Mori I. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu Rev Genet 1999, 33: 399–422.CrossRefPubMedGoogle Scholar
  10. [10]
    Ye HY, Ye BP, Wang DY. Learning and learning choice in the nematode Caenorhabditis elegans. Neurosci Bull 2006, 22: 355–360.PubMedGoogle Scholar
  11. [11]
    Adachi R, Osada H, Shingai R. Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans. BMC Neurosci 2008, 9: 106.CrossRefPubMedGoogle Scholar
  12. [12]
    Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S, et al. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 2002, 109: 639–649.CrossRefPubMedGoogle Scholar
  13. [13]
    Matsuura T, Oikawa T, Wakabayashi T, Shingai R. Effects of simultaneous presentation of multiple attractants on chemotactic response of the nematode Caenorhabditis elegans. Neurosci Res 2004, 48: 419–429.CrossRefPubMedGoogle Scholar
  14. [14]
    Lin L, Wakabayashi T, Oikawa T, Sato T, Ogurusu T, Shingai R. Caenorhabditis elegans mutants having altered preference of chemotaxis behavior during simultaneous presentation of two chemoattractants. Biosci Biotechnol Biochem 2006, 70: 2754–2758.CrossRefPubMedGoogle Scholar
  15. [15]
    Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, et al. CASY-1, an orthlog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2008, 105: 5260–5265.CrossRefPubMedGoogle Scholar
  16. [16]
    Hunter JW, Mullen G, McManus JR, Heatherly JM, Duke A, Rand JB. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 2010, 3: 366–376.CrossRefPubMedGoogle Scholar
  17. [17]
    Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008, 106: 5–28.CrossRefPubMedGoogle Scholar
  18. [18]
    Wang DY, Xing XJ. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci 2008, 20: 1132–1137.CrossRefGoogle Scholar
  19. [19]
    Du M, Wang DY. The neurotoxic effects of heavy metal exposure on GABAergic system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 2009, 27: 314–320.CrossRefGoogle Scholar
  20. [20]
    Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survial and synaptic function than in adult nematodes. Arch Environ Contam Toxicol 2009, 56: 732–741.CrossRefPubMedGoogle Scholar
  21. [21]
    Xing XJ, Du M, Xu XM, Rui Q, Wang DY. Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 2009, 28: 104–110.CrossRefGoogle Scholar
  22. [22]
    Xing XJ, Du M, Zhang YF, Wang DY. Adverse effects of metal exposure on chemotaxis towards water-soluble attrabtants regulated by ASE sensory neurons in nematode Caenorhabditis elegans. J Environ Sci 2009, 21: 1684–1694.CrossRefGoogle Scholar
  23. [23]
    Wang DY, Wang Y. Nickle sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny. Environ Pollut 2008, 151: 585–592.CrossRefPubMedGoogle Scholar
  24. [24]
    Ye HY, Ye BP, Wang DY. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Memory 2008, 90: 10–18.CrossRefGoogle Scholar
  25. [25]
    Zhang YF, Ye BP, Wang DY. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 2010, 59: 129–136.CrossRefPubMedGoogle Scholar
  26. [26]
    AltunGultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, Hobert O. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 2001, 128: 1951–1969.Google Scholar
  27. [27]
    Chase DL, Pepper JS, Koelle MR. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 2004, 7: 1096–1103.CrossRefPubMedGoogle Scholar
  28. [28]
    McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM. Identification and characterization of the vesicle GABA transporter. Nature 1997, 389: 870–876.CrossRefPubMedGoogle Scholar
  29. [29]
    Yu S, Avery L, Baude E, Garbers DL. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A 1997, 94: 3384–3387.CrossRefPubMedGoogle Scholar
  30. [30]
    Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 1996, 84: 899–909.CrossRefPubMedGoogle Scholar
  31. [31]
    Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 2005, 24: 63–72.CrossRefPubMedGoogle Scholar
  32. [32]
    Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, Liu Y, et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 1997, 19: 345–357.CrossRefPubMedGoogle Scholar
  33. [33]
    Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, et al. Dissecting a circuit for olfactory behavior in Canorhabditis elegans. Nature 2007, 450: 63–70.CrossRefPubMedGoogle Scholar
  34. [34]
    Mckay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symb Quant Biol 2003, 68: 159–170.CrossRefGoogle Scholar
  35. [35]
    Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974, 77: 71–94.PubMedGoogle Scholar
  36. [36]
    Donkin S, Williams PL. Influence of developmental stage, salts and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testing. Environ Toxicol Chem 1995, 14: 2139–2147.Google Scholar
  37. [37]
    Wicks SR, de Vries CJ, van Luenen HG, Plasterk RH. CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol 2000, 221: 295–307.CrossRefPubMedGoogle Scholar
  38. [38]
    Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1993, 74: 515–527.CrossRefPubMedGoogle Scholar
  39. [39]
    Saeki S, Yamamoto M, Iino Y. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 2001, 204: 1757–1764.PubMedGoogle Scholar
  40. [40]
    Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A 2003, 100: 9980–9985.CrossRefPubMedGoogle Scholar
  41. [41]
    Wang DY, Liu PD, Yang YC, Shen LL. Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Safe 2010, 73: 1221–1230.CrossRefGoogle Scholar
  42. [42]
    Chu KW, Chow KL. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 2002, 61: 53–64.CrossRefGoogle Scholar
  43. [43]
    Liao EH, Hung W, Abrams B, Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 2004, 430: 345–350.CrossRefPubMedGoogle Scholar
  44. [44]
    Sambongi Y, Takeda K, Wakabayashi T, Ueda I, Wada Y, Futai M. Caenorhabditis elegans senses protons through amphid chemosensory neurons: proton signals elicit avoidance behavior. Neuroreport 2000, 11: 2229–2232.CrossRefPubMedGoogle Scholar
  45. [45]
    Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, et al. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 1999, 10: 753–757.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yin-Xia Li (李隐侠)
    • 1
  • Yang Wang (汪洋)
    • 1
  • Ya-Ou Hu (胡亚欧)
    • 1
  • Ji-Xiang Zhong (仲纪祥)
    • 1
  • Da-Yong Wang (王大勇)
    • 1
    Email author
  1. 1.Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Institute of Life SciencesSoutheast UniversityNanjingChina

Personalised recommendations