Neuroscience Bulletin

, Volume 27, Issue 6, pp 383–388 | Cite as

Mechanism of Integrative Body-Mind Training

Review

Abstract

Integrative Body-Mind Training (IBMT) originates from ancient Eastern tradition. The method stresses no effort to control thoughts, but instead a state of restful alertness that allows a high degree of awareness of the body, breathing, and external instructions. A series of studies indicates that IBMT improves attention and self-regulation through interaction between the central (brain) and the autonomic (body) nervous systems. The present review mainly summarizes the recent results of IBMT studies and proposes how it changes the state of brain and body to lead to positive outcomes. Future directions in this field are also discussed.

Keywords

Integrative Body-Mind Training neuroplasticity autonomic nervous system central nervous system 

整体身心调节法的机理

摘要

k]整体身心调节法源于东方身心科学, 并结合了现代脑科学的最新发现。系列研究表明, 整体身心调节法通过中枢和自主神经系统的相互作用, 可以提高注意力和自我调节能力, 具有降低压力、保持健康和提高表现等作用。本文概述了整体身心调节法的近期研究成果, 提出状态改变机制, 同时对未来本领域的发展趋势进行展望。

关键词

整体身心调节法 神经可塑性 自主神经系统 中枢神经系统 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tang YY. Exploring the Brain, Optimizing the Life. Beijing: Science Press, 2009.Google Scholar
  2. [2]
    Tang YY. Health from Brain, Wisdom from Brain. Dalian: Dalian University of Technology Press, 2005.Google Scholar
  3. [3]
    Tang YY. Multi-intelligence and Unfolding the Full Potential of Brain. Dalian: Dalian University of Technology Press, 2007.Google Scholar
  4. [4]
    Tang YY, Ma Y, Wang J, Fan Y, Feng S, Lu Q, et al. Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci U S A 2007, 104: 17152–17156.PubMedCrossRefGoogle Scholar
  5. [5]
    Tang YY, Ma Y, Fan Y, Feng H, Wang J, Feng S, et al. Tang YY, Ma Y, Fan Y, Feng H, Wang J, Feng S, et al. Central and autonomic nervous system interaction is altered by short-term meditation. Proc Natl Acad Sci U S A 2009, 106: 8865–8870.PubMedCrossRefGoogle Scholar
  6. [6]
    Tang YY, Lu Q, Geng X, Stein EA, Yang Y, Posner MI. Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci U S A 2010, 107: 15649–15652.PubMedCrossRefGoogle Scholar
  7. [7]
    Fan Y, Tang YY, Ma Y, Posner MI. Mucosal immunity modulated by integrative meditation in a dose-dependent fashion. J Altern Complement Med 2010, 16: 151–155.PubMedCrossRefGoogle Scholar
  8. [8]
    Xue S, Tang YY, Posner MI. Short-term meditation increases network efficiency of the anterior cingulate cortex. Neuroreport 2011, 22: 570–574.PubMedGoogle Scholar
  9. [9]
    Tang YY, Posner MI. The neuroscience of mindfulness. NeuroLeadership J 2008, 1: 33–37.Google Scholar
  10. [10]
    Tang YY, Posner MI. Attention training and attention state training. Trends Cogn Sci 2009, 13: 222–227.PubMedCrossRefGoogle Scholar
  11. [11]
    Fan J, McCandliss BD, Sommer T, Raz M, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002, 3: 340–343.CrossRefGoogle Scholar
  12. [12]
    Dijkstra K, Kaschak MP, Zwaan RA. Body posture facilitates retrieval of autobiographical memories. Cognition 2007, 102: 139–149.PubMedCrossRefGoogle Scholar
  13. [13]
    Niedenthal PM. Embodying emotion. Science 2007, 316: 1002–1005.PubMedCrossRefGoogle Scholar
  14. [14]
    Huang L, Galinsky AD, Gruenfeld DH, Guillory LE. Powerful postures versus powerful roles: which is the proximate correlate of thought and behavior? Psychol Sci 2011, 22: 95–102.PubMedCrossRefGoogle Scholar
  15. [15]
    Drganski B, Gaser C, Busch V. Schuierer G, Bogdahn U, May A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427: 311–312.CrossRefGoogle Scholar
  16. [16]
    Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci 2009, 12: 1370–1371.PubMedCrossRefGoogle Scholar
  17. [17]
    Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, et al. Training of working memory impacts structural connectivity. J Neurosci 2010, 30: 3297–3303.PubMedCrossRefGoogle Scholar
  18. [18]
    Tang YY, Lu Q, Xue S, Li J, Cao C, Zhang L, et al. Does shortterm mental training induce grey matter change? Prog Mod Biomed 2010, 10: 2961–2963.Google Scholar
  19. [19]
    Fan Y, Tang YY, Ma Y, Posner MI. Mucosal immunity modulated by integrative meditation in a dose-dependent fashion. J Altern Complement Med 2010, 16: 151–155.PubMedCrossRefGoogle Scholar
  20. [20]
    Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 2007, 7: 391–395.PubMedCrossRefGoogle Scholar
  21. [21]
    Fernandez-Duque D, Black SE. Attentional networks in normal aging and Alzheimer’s disease. Neuropsychology 2006, 20: 133–143.PubMedCrossRefGoogle Scholar
  22. [22]
    Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, et al. Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry 2009, 66: 431–441.PubMedCrossRefGoogle Scholar
  23. [23]
    Segal D, Haznedar MM, Hazlett EA, Entis JJ, Newmark RE, Torosjan Y, et al. Diffusion tensor anisotropy in the cingulate gyrus in schizophrenia. Neuroimage 2010, 50: 357–365.PubMedCrossRefGoogle Scholar
  24. [24]
    Baer RA, Smith GT, Allen KB. Assessment of mindfulness by selfreport: the Kentucky inventory of mindfulness skills. Assessment 2004, 11: 191–206.PubMedCrossRefGoogle Scholar
  25. [25]
    Winbush NY, Gross CR, Kreitzer MJ. The effects of mindfulnessbased stress reduction on sleep disturbance: a systematic review. Explore (NY). 2007, 3: 585–591.CrossRefGoogle Scholar
  26. [26]
    Woods-Giscombé CL, Black AR. Mind-body interventions to reduce risk for health disparities related to stress and strength among African American women: The potential of mindfulnessbased stress reduction, loving-kindness, and the NTU therapeutic framework. Complement Health Pract Rev 2010, 15: 115–131.PubMedCrossRefGoogle Scholar
  27. [27]
    Chiesa A, Brambilla P, Serretti A. Neuro-imaging of mindfulness meditations: implications for clinical practice. Epidemiol Psychiatr Sci 2011, 20: 205–210.PubMedCrossRefGoogle Scholar
  28. [28]
    Chiesa A, Serretti A. A systematic review of neurobiological and clinical features of mindfulness meditations. Psychol Med 2010, 40: 1239–1252.PubMedCrossRefGoogle Scholar
  29. [29]
    Farb NA, Segal ZV, Mayberg H, Bean J, McKeon D, Fatima Z, et al. Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc Cogn Affect Neurosci 2007, 2: 313–322.PubMedCrossRefGoogle Scholar
  30. [30]
    Creswell JD, Way BM, Eisenberger NI, Lieberman MD. Neural correlates of dispositional mindfulness during affect labeling. Psychosom Med 2007, 69: 560–565.PubMedCrossRefGoogle Scholar
  31. [31]
    Hölzel BK, Ott U, Gard T, Hempel H, Weygandt M, Morgen K, et al. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci 2008, 3: 55–61.PubMedCrossRefGoogle Scholar
  32. [32]
    Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci U S A 2007, 104: 11483–11488.PubMedCrossRefGoogle Scholar
  33. [33]
    Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn Sci 2008, 12: 163–169.PubMedCrossRefGoogle Scholar
  34. [34]
    Posner MI, Rothbart MK. Educating the Human Brain. Washington, DC: American Psychological Association, 2007.CrossRefGoogle Scholar
  35. [35]
    Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997, 277: 968–997.PubMedCrossRefGoogle Scholar
  36. [36]
    Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An fMRI study of social exclusion. Science 2003, 302: 290–292.PubMedCrossRefGoogle Scholar
  37. [37]
    Hampton AN, O’Doherty JP. Decoding the neural substrates of reward-related decision making with functional MRI. Proc Natl Acad Sci U S A 2007, 104: 1377–1382.PubMedCrossRefGoogle Scholar
  38. [38]
    Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev 2001, 108: 624–652.PubMedCrossRefGoogle Scholar
  39. [39]
    Dehaene S, Posner MI, Tucker DM. Localization of a neural system for error detection and compensation. Psychol Sci 1994, 5: 303–305.CrossRefGoogle Scholar
  40. [40]
    Kampe KKW, Frith CD, Frith U. “Hey John”: Signals conveying communicative intention toward the self activate brain regions associated with “mentalizing”, regardless of modality. J Neurosci 2003, 23: 5258–5263.PubMedGoogle Scholar
  41. [41]
    Posner MI, Rothbart MK. Research on attention networks as a model for the integration of psychological science. Ann Rev Psychol 2007, 58: 1–23.CrossRefGoogle Scholar
  42. [42]
    Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000, 4: 215–222.PubMedCrossRefGoogle Scholar
  43. [43]
    Fan J, Flombaum JI, McCandliss BD, Thomas KM, Posner MI. Cognitive and brain consequences of conflict. NeuroImage 2003, 18: 42–57.PubMedCrossRefGoogle Scholar
  44. [44]
    Beauregard M, Levesque J, Bourgouin P. Neural correlates of conscious self-regulation of emotion. J Neurosci 2001, 21: RC165.PubMedGoogle Scholar
  45. [45]
    Ochsner KN, Kossyln SM, Cosgrove GR, Cassem EH, Price BH, Nierenberg AA, et al. Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia 2001, 39: 219–230.PubMedCrossRefGoogle Scholar
  46. [46]
    Crottaz-Herbette S, Menon V. Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. J Cogn Neurosci 2006, 18: 766–780.PubMedCrossRefGoogle Scholar
  47. [47]
    Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 2006, 51: 871–882.PubMedCrossRefGoogle Scholar
  48. [48]
    Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 2007, 7: 391–395.PubMedCrossRefGoogle Scholar
  49. [49]
    Lou HC, Kjaer TW, Friberg L, Wildschiodtz G, Holm S, Nowak M. A 15O-H2O PET study of meditation and the resting state of normal consciousness. Human Brain Map 1999, 7: 98–105.CrossRefGoogle Scholar
  50. [50]
    Dietrich A. Functional neuroanatomy of altered states of consciousness: the transient hypofrontality hypothesis. Conscious Cogn 2003, 12: 231–256.PubMedCrossRefGoogle Scholar
  51. [51]
    Limb CJ, Braun AR. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS One 2008, 3: e1679.PubMedCrossRefGoogle Scholar
  52. [52]
    Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16: 1893–1897.PubMedCrossRefGoogle Scholar
  53. [53]
    Grant JA, Courtemanche J, Duerden EG, Duncan GH, Rainville P. Cortical thickness and pain sensitivity in zen meditators. Emotion 2010, 10: 43–53.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Neuroinformatics and Lab for Body and MindDalian University of TechnologyDalianChina

Personalised recommendations