Neuroscience Bulletin

, Volume 27, Issue 1, pp 36–44 | Cite as

Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons



Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.


axon conduction potassium channel injury demyelination 4-aminopyridine 



在脊椎中枢神经系统中, 少突胶质细胞能形成轴突的髓鞘。 髓鞘对轴突具有保护作用, 使轴突具有电绝缘的特性, 其独特的节段状结构使髓鞘化的神经轴突能快速、 跳跃式地传导神经冲动。 髓鞘损伤常见于脊髓损伤和一些慢性神经退行性疾病, 由其引起的轴突传导阻滞被认为是引起损伤相关的神经并发症的主要原因。 钾离子通道在发生于脊髓损伤和多发性硬化征的轴突传导阻滞中扮演重要角色。 髓鞘损伤后会暴露钾离子通道, 引起钾离子泄漏, 从而阻断神经传导。 将钾离子通道阻滞后, 离子泄漏得到抑制, 进而能促进神经传导。 本综述主要详细介绍了修复轴突神经传导功能技术的研究进展和脱髓鞘轴突的神经功能。 最近的研究表明, 4-氨基吡啶能有效治疗多发性硬化征。 此外, 转化型研究也筛选出了一些能有效修复轴突神经传导的新型的钾离子通道阻滞剂。


轴突 传导 钾离子通道 损伤 脱髓鞘 4-氨基吡啶 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 4th ed. New York: McGraw-hill, 2000.Google Scholar
  2. [2]
    Waxman SG, Kocsis JD, Stys PK. The Axon. New York Oxford: Oxford University Press, 1995.CrossRefGoogle Scholar
  3. [3]
    Blight AR. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Central Nervous System Trauma 1985, 2: 299–315.PubMedGoogle Scholar
  4. [4]
    Shi R, Blight AR. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 1997, 77: 553–562.CrossRefPubMedGoogle Scholar
  5. [5]
    Nashmi R, Fehlings MG. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 2001, 104: 235–251.CrossRefPubMedGoogle Scholar
  6. [6]
    Waxman SG. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med 1982, 306: 1529–1533.CrossRefPubMedGoogle Scholar
  7. [7]
    Waxman SG. Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 1998, 338: 323–325.PubMedGoogle Scholar
  8. [8]
    Waxman SG. Ion channels and neuronal dysfunction in multiple sclerosis. Arch Neurol 2002, 59: 1377–1380.CrossRefPubMedGoogle Scholar
  9. [9]
    Jensen JM, Shi R. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J Neurophysiol 2003, 90: 2334–2340.CrossRefPubMedGoogle Scholar
  10. [10]
    Sun W, Smith D, Fu Y, Cheng JX, Bryn S, Borgens R, et al. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. J Neurophysiol 2010, 103: 469–478.CrossRefPubMedGoogle Scholar
  11. [11]
    Waxman SG, Ritchie JM. Molecular dissection of the myelinated axon. Ann Neurol 1993, 33: 121–136.CrossRefPubMedGoogle Scholar
  12. [12]
    Poliak S, Peles E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 2003, 4: 968–980.CrossRefPubMedGoogle Scholar
  13. [13]
    Vabnick I, Trimmer JS, Schwarz TL, Levinson SR, Risal D, Shrager P. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J Neurosci 1999, 19: 747–758.PubMedGoogle Scholar
  14. [14]
    Zhou L, Zhang CL, Messing A, Chiu SY. Temperature-sensitive neuromuscular transmission in Kv1.1 null mice: role of potassium channels under the myelin sheath in young nerves. J Neurosci 1998, 18: 7200–7215.PubMedGoogle Scholar
  15. [15]
    Chiu SY. Asymmetry currents in the mammalian myelinated nerve. J Physiol 1980, 309: 499–519.PubMedGoogle Scholar
  16. [16]
    Chiu SY, Ritchie JM. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1984, 220: 415–422.CrossRefPubMedGoogle Scholar
  17. [17]
    Peles E, Salzer JL. Molecular domains of myelinated axons. Curr Opin Neurobiol 2000, 10: 558–565.CrossRefPubMedGoogle Scholar
  18. [18]
    Salzer JL, Brophy PJ, Peles E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 2008, 56: 1532–1540.CrossRefPubMedGoogle Scholar
  19. [19]
    Ouyang H, Sun W, Fu Y, Li J, Cheng JX, Nauman E, et al. Compression induces acute demyelination and potassium channel exposure in spinal cord. J Neurotrauma 2010, 27: 1109–1120.CrossRefPubMedGoogle Scholar
  20. [20]
    Shi R, Kelly TM, Blight AR. Conduction block in acute and chronic spinal cord injury: Different dose-response characteristics for reversal by 4-Aminopyridine. Exp Neurology 1997, 148: 495–501.CrossRefGoogle Scholar
  21. [21]
    Waxman SG. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery? J Neurotrauma 1992, 9: S105–117.PubMedGoogle Scholar
  22. [22]
    Blight AR. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J Neurol Sci 1991, 103: 156–171.CrossRefPubMedGoogle Scholar
  23. [23]
    Nashmi R, Jones OT, Fehlings MG. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury. Eur J Neurosci 2000, 12: 491–506.CrossRefPubMedGoogle Scholar
  24. [24]
    Karimi-Abdolrezaee S, Eftekharpour E, Fehlings MG. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci 2004, 19: 577–589.CrossRefPubMedGoogle Scholar
  25. [25]
    McDonald JW, Belegu V. Demyelination and remyelination after spinal cord injury. J Neurotrauma 2006, 23: 345–359.CrossRefPubMedGoogle Scholar
  26. [26]
    Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 2005, 486: 373–383.CrossRefPubMedGoogle Scholar
  27. [27]
    Wang H, Fu Y, Zickmund P, Shi R, Cheng JX. Coherent antistokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 2005, 89: 581–591.CrossRefPubMedGoogle Scholar
  28. [28]
    Howell OW, Palser A, Polito A, Melrose S, Zonta B, Scheiermann C, et al. Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 2006, 129: 3173–3185.CrossRefPubMedGoogle Scholar
  29. [29]
    Shi R, Pryor JD. Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience 2002, 110: 765–777.CrossRefPubMedGoogle Scholar
  30. [30]
    Waxman SG. Demyelination in spinal cord injury. J Neurol Sci 1989, 91: 1–14.CrossRefPubMedGoogle Scholar
  31. [31]
    Fu Y, Sun W, Shi Y, Shi R, Cheng JX. Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS One 2009, 4: e6705.CrossRefPubMedGoogle Scholar
  32. [32]
    Fu Y, Wang H, Huff TB, Shi R, Cheng JX. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res 2007, 85: 2870–2881.CrossRefPubMedGoogle Scholar
  33. [33]
    Bostock H, Sears TA, Sherratt RM. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J Physiol 1981, 313: 301–315.PubMedGoogle Scholar
  34. [34]
    Bostock H, Sherratt RM, Sears TA. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature 1978, 274: 385–387.CrossRefPubMedGoogle Scholar
  35. [35]
    Targ EF, Kocsis JD. 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res 1985, 328: 358–361.CrossRefPubMedGoogle Scholar
  36. [36]
    Blight AR. Effect of 4-aminopyridine on axonal conductionblock in chronic spinal cord injury. Brain Res Bull 1989, 22: 47–52.CrossRefPubMedGoogle Scholar
  37. [37]
    Blight AR, Gruner JA. Augmentation by 4-aminopyridine of vestibulospinal free fall responses in chronic spinal-injured cats. J Neurol Sci 1987, 82: 145–159.CrossRefPubMedGoogle Scholar
  38. [38]
    Kaji R, Sumner AJ. Effects of 4-aminopyridine in experimental CNS demyelination. Neurology 1988, 38: 1884–1887.PubMedGoogle Scholar
  39. [39]
    Hayes KC, Blight AR, Potter PJ, Allatt RD, Hsieh J, Wolfe DL, et al. Preclinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Paraplegia 1993, 31: 216–224.PubMedGoogle Scholar
  40. [40]
    Hayes KC. The use of 4-aminopyridine (Fampridine) in demyelinating disorders. CNS Drug Rev 2004, 10: 295–316.CrossRefPubMedGoogle Scholar
  41. [41]
    Donovan WH, Halter JA, Graves DE, Blight AR, Calvillo O, McCann MT, et al. Intravenous infusion of 4-AP in chronic spinal cord injured subjects. Spinal Cord 2000, 38: 7–15.CrossRefPubMedGoogle Scholar
  42. [42]
    Halter JA, Blight AR, Donovan WH, Calvillo O. Intrathecal administration of 4-aminopyridine in chronic spinal injured patients. Spinal Cord 2000, 38: 728–732.CrossRefPubMedGoogle Scholar
  43. [43]
    Goodman AD, Brown TR, Krupp LB, Schapiro RT, Schwid SR, Cohen R, et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 2009, 373: 732–738.CrossRefPubMedGoogle Scholar
  44. [44]
    Targ EF, Kocsis JD. Action potential characteristics of demyelinated rat sciatic nerve following application of 4-aminopyridine. Brain Res 1986, 363: 1–9.CrossRefPubMedGoogle Scholar
  45. [45]
    Blight AR. Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience 1985, 15: 13–31.CrossRefPubMedGoogle Scholar
  46. [46]
    van der Bruggen MA, Huisman HB, Beckerman H, Bertelsmann FW, Polman CH, Lankhorst GJ. Randomized trial of 4-aminopyridine in patients with chronic incomplete spinal cord injury. J Neurol 2001, 248: 665–671.CrossRefPubMedGoogle Scholar
  47. [47]
    Acorda. Acorda Therapeutics Reports Results of Fampridine-SR Clinical Trials (Press Release). 2004.Google Scholar
  48. [48]
    Potter PJ, Hayes KC, Segal JL, Hsieh JT, Brunnemann SR, Delaney GA, et al. Randomized double-blind crossover trial of fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma 1998, 15: 837–849.CrossRefPubMedGoogle Scholar
  49. [49]
    Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G, Mino D, Maldonado-Julian H, Vidal-Cantu G, et al. Efficacy and safety of 4-aminopyridine in patients with long-term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy 2003, 23: 823–834.CrossRefPubMedGoogle Scholar
  50. [50]
    Stefoski D, Davis FA, Fitzsimmons WE, Luskin SS, Rush J, Parkhurst GW. 4-Aminopyridine in multiple sclerosis: Prolonged administration. Neurology 1991, 41: 1344–1348.PubMedGoogle Scholar
  51. [51]
    Stefoski D, Davis FA, Faut M, Schauf CL. 4-Aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol 1987, 21: 71–77.CrossRefPubMedGoogle Scholar
  52. [52]
    Fujihara K, Miyoshi T. The effects of 4-aminopyridine on motor evoked potentials in multiple sclerosis. J Neurol Sci 1998, 159: 102–106.CrossRefPubMedGoogle Scholar
  53. [53]
    Davis FA, Stefoski D, Quandt FN. Mechanism of action of 4-aminopyridine in the symptomatic treatment of multiple sclerosis. Ann Neurol 1995, 37: 684–684.CrossRefPubMedGoogle Scholar
  54. [54]
    Polman CH, Bertelsmann FW, De Waal R, Van DH, Uitdehaag B, Van Loenen AC, et al. 4-Aminopyridine is superior to 3,4-diaminopyridine in the treatment of patients with multiple sclerosis. Arch Neurol 1994, 51: 1136–1139.PubMedGoogle Scholar
  55. [55]
    Polman CH, Bertelsmann FW, Van Loenen AC, Koetsier JC. 4-Aminopyridine in the treatment of patients with multiple sclerosis. Arch Neurol 1994, 51: 292–296.PubMedGoogle Scholar
  56. [56]
    van Diemen H, Polman CH, van Dongen M, Nauta J, Strijers R, Van Loenen AC, et al. 4-Aminopyridine induces functional improvement in multiple sclerosis patients: A neurophysiological study. J Neurol Sci 1993, 116: 220–226.CrossRefPubMedGoogle Scholar
  57. [57]
    Bever CT Jr., Young D, Anderson PA, Krumholz A, Conway K, Leslie J, et al. The effects of 4-aminopyridine in multiple sclerosis patients: controlled, crossover trial. Neurology 1994, 44: 1054–1059.PubMedGoogle Scholar
  58. [58]
    van Diemen HAM, Polman CH, van Dongen TMMM, van Loenen AC, Nauta JJP, Taphoorn MJB, et al. The effect of 4-aminopyridine on clinical signs in multiple sclerosis: a randomized, placebo-controlled, double-blind, cross-over study. Ann Neurol 1992, 32: 123–130.CrossRefPubMedGoogle Scholar
  59. [59]
    Davis FA, Stefoski D, Rush J. Orally administered 4-aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol 1990, 27: 186–192.CrossRefPubMedGoogle Scholar
  60. [60]
    Jones RE, Heron JR, Foster DH, Snelgar RS, Mason RJ. Effects of 4-aminopyridine in patients with multiple sclerosis. J Neurol Sci 1983, 60: 353–362.CrossRefPubMedGoogle Scholar
  61. [61]
    Judge SI, Bever CT Jr. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006, 111: 224–259.CrossRefPubMedGoogle Scholar
  62. [62]
    Goodman AD, Brown TR, Cohen JA, Krupp LB, Schapiro R, Schwid SR, et al. Dose comparison trial of sustained-release fampridine in multiple sclerosis. Neurology 2008, 71: 1134–1141.CrossRefPubMedGoogle Scholar
  63. [63]
    Goodman AD, Brown TR, Edwards KR, Krupp LB, Schapiro RT, Cohen R, et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 2010, 68: 494–502.CrossRefPubMedGoogle Scholar
  64. [64]
    Goodman AD, Cohen JA, Cross A, Vollmer T, Rizzo M, Cohen R, et al. Fampridine-SR in multiple sclerosis: a randomized, double-blind, placebo-controlled, dose-ranging study. Mult Scler 2007, 13: 357–368.CrossRefPubMedGoogle Scholar
  65. [65]
    Van Diemen HA, Polman CH, Koetsier JC, Van Loenen AC, Nauta JJ, Bertelsmann FW. 4-Aminopyridine in patients with multiple sclerosis: dosage and serum level related to efficacy and safety. Clin Neuropharmacol 1993, 16: 195–204.CrossRefPubMedGoogle Scholar
  66. [66]
    Agoston S, Salt PJ, Erdmann W, Hilkemeijer T, Bencini A, Langrehr D. Antagonism of ketamine-diazepam anaesthesia by 4-aminopyridine in human volunteers. Br J Anaesth 1980, 52: 367–371.CrossRefPubMedGoogle Scholar
  67. [67]
    Pena F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamateand GABA-mediated neurotransmission and of ion channels. Neuroscience 2000, 101: 547–561.CrossRefPubMedGoogle Scholar
  68. [68]
    Pena F, Tapia R. Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study. J Neurochem 1999, 72: 2006–2014.CrossRefPubMedGoogle Scholar
  69. [69]
    Stork CM, Hoffman RS. Characterization of 4-aminopyridine in overdose. Clin Toxicol 1994, 32: 583–587.CrossRefGoogle Scholar
  70. [70]
    Felts PA, Smith KJ. The use of potassium channel blocking agents in the therapy of demyelinating diseases. Ann Neurol 1994, 36: 454–454.CrossRefPubMedGoogle Scholar
  71. [71]
    Smith DT, Shi R, Borgens RB, McBride JM, Jackson K, Byrn SR. Development of novel 4-aminopyridine derivatives as potential treatments for neurological injury and disease. Eur J Med Chem 2005, 40: 908–917.CrossRefPubMedGoogle Scholar
  72. [72]
    McBride JM, Smith DT, Byrn SR, Borgens RB, Shi R. 4-Aminopyridine derivatives enhance impulse conduction in guineapig spinal cord following traumatic injury. Neuroscience 2007, 148: 44–52.CrossRefPubMedGoogle Scholar
  73. [73]
    Sun W, Smith D, Bryn S, Borgens R, Shi R. N-(4-pyridyl) methyl carbamate inhibits fast potassium currents in guinea pig dorsal root ganglion cells. J Neurol Sci 2009, 277: 114–118.CrossRefPubMedGoogle Scholar
  74. [74]
    McBride JM, Smith DT, Byrn SR, Borgens RB, Shi R. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma. Eur J Pharm Sci 2006, 27: 237–242.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Basic Medical Sciences, School of Veterinary Medicine, Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations