Advertisement

Neuroscience Bulletin

, Volume 27, Issue 3, pp 135–142 | Cite as

Effects of SKF-96365, a TRPC inhibitor, on melittin-induced inward current and intracellular Ca2+ rise in primary sensory cells

  • Jing Ding (丁静)
  • Yong Xiao (肖勇)
  • Dan Lu (吕丹)
  • Yi-Ru Du (杜意如)
  • Xiu-Yu Cui (崔秀玉)
  • Jun Chen (陈军)Email author
Original Article

Abstract

Objective

Melittin (MEL) is a major component of bee venom and can produce both persistent spontaneous nociception and pain hypersensitivity when injected subcutaneously in the periphery. The present study aimed to examine the roles of transient receptor potential canonical (TRPC) channels in mediation of MEL-induced activation of primary nociceptive cells.

Methods

Whole-cell patch-clamp and laser scanning confocal calcium detection were used to evaluate the effects of SKF-96365, a TRPC inhibitor, applied on the acutely isolated dorsal root ganglion (DRG) cells of rat, on MEL-induced increase in intracellular calcium concentration ([Ca2+]i) and inward current.

Results

Under voltageclamp mode, 43.9% (40/91) DRG cells were evoked to give rise to the inward current by 2 μmol/L MEL, which could be significantly suppressed by 3 doses of SKF-96365 (1, 5 and 10 μmol/L) in a dose-dependent manner. Of the other 210 cells, 67.6% responded to MEL with an intracellular Ca2+ rise, as revealed by confocal calcium imaging. Of these MEL-sensitive cells, 46.5% (66/142) were suppressed by the highest dose of SKF-96365.

Conclusion

MEL-induced activation of small to medium-sized DRG cells can be suppressed by SKF-96365, suggesting the involvement of TRPC channels in the mediation of MEL-induced activation of primary nociceptive cells.

Keywords

melittin transient receptor potential canonical channel dorsal root ganglion patch-clamp technique calcium imaging 

TRPC 通道阻断剂SKF-96365 对蜜蜂毒肽诱发初级感觉细胞内向电流和胞内钙增高的作用

摘要

目的

蜜蜂毒肽是蜜蜂粗毒中的主要物质。 外周皮下注射蜜蜂毒肽可导致持续性自发痛和痛觉过敏。 本研究旨在研究瞬时受体电势C (transient receptor potential canonical, TRPC) 通道在蜜蜂毒肽诱致的初级感觉神经元活化中的介导作用。

方法

运用全细胞膜片钳和激光共聚焦测钙技术, 检测TRPC通道抑制剂SKF-96365对蜜蜂毒肽诱致的急性分离大鼠背根神经节细胞胞内钙和内向电流升高的影响。

结果

电压钳记录的91个背根神经节细胞中, 蜜蜂毒肽可诱发43.9% (40/91)的细胞产生内向电流, 而不同浓度的SKF-96365 (1, 5, 10 μmol/L) 均明显抑制了背根神经节细胞的内向电流, 且呈剂量相关性。 应用激光共聚焦钙成像技术记录的210个背根神经节细胞中, 67.6% 的细胞对蜜蜂毒肽敏感, 产生胞内钙离子浓度的升高, 而SKF-96365能抑制这种胞内钙浓度的升高, 抑制率为46.5%。

结论

SKF-96365能够抑制蜜蜂毒肽引起的背根神经节中小神经元的活化, 提示TRPC通道介导了蜜蜂毒肽对初级感觉神经元的激活作用。

关键词

蜜蜂毒肽 瞬时受体电势C通道 背根神经节 膜片钳技术 激光共聚焦测钙 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain 1996, 66: 271–277.PubMedCrossRefGoogle Scholar
  2. [2]
    Habermann E. Bee and wasp venoms. Science 1972, 177: 314–322.PubMedCrossRefGoogle Scholar
  3. [3]
    Chen J, Luo C, Li H, Chen H. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 1999, 83: 67–76.PubMedCrossRefGoogle Scholar
  4. [4]
    Du YR, Xiao Y, Lu ZM, Ding J, Xie F, Fu H, et al. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun 2011, 408: 32–37.PubMedCrossRefGoogle Scholar
  5. [5]
    Li KC, Chen J. Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience 2004, 126: 753–762.Google Scholar
  6. [6]
    Chen YN, Li KC, Li Z, Shang GW, Liu DN, Lu ZM, et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience 2006, 138: 631–640.PubMedCrossRefGoogle Scholar
  7. [7]
    Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010, 92: 151–183.PubMedCrossRefGoogle Scholar
  8. [8]
    Sumikura H, Andersen OK, Drewes AM, Arendt-Nielsen L. A comparison of hyperalgesia and neurogenic inflammation induced by melittin and capsaicin in humans. Neurosci Lett 2003, 337: 147–150.PubMedCrossRefGoogle Scholar
  9. [9]
    Vyklicky L, Knotkova-Urbancova H. Can sensory neurons in culture serve as a model of nociception? Physiol Res 1996, 45: 1–9.PubMedGoogle Scholar
  10. [10]
    Lu ZM, Xie F, Fu H, Liu MG, Cao FL, Hao J, et al. Roles of peripheral P2X and P2Y receptors in the development of melittininduced nociception and hypersensitivity. Neurochem Res 2008, 33: 2085–2091.PubMedCrossRefGoogle Scholar
  11. [11]
    Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005, 38: 233–252.PubMedCrossRefGoogle Scholar
  12. [12]
    Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006, 68: 619–647.PubMedCrossRefGoogle Scholar
  13. [13]
    Clapham DE. TRP channels as cellular sensors. Nature 2003, 426: 517–524.PubMedCrossRefGoogle Scholar
  14. [14]
    Elg S, Marmigere F, Mattsson JP, Ernfors P. Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 2007, 503: 35–46.PubMedCrossRefGoogle Scholar
  15. [15]
    Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 2002, 109: 95–104.PubMedCrossRefGoogle Scholar
  16. [16]
    Tian LJ, Du YR, Xiao Y, Lv ZM, Yu YQ, Cui XY, et al. Mediating roles of the vanilloid receptor TRPV1 in activation of rat primary afferent nociceptive neurons by formaldehyde. Acta Physiol Sinica 2009, 61: 404–416.PubMedGoogle Scholar
  17. [17]
    Hao J, Liu MG, Yu YQ, Cao FL, Li Z, Lu ZM, et al. Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience 2008, 152: 1067–1075.PubMedCrossRefGoogle Scholar
  18. [18]
    Yu YQ, Zhao F, Chen J. Activation of ERK1/2 in the primary injurysite is required to maintain melittin-enhanced wind-up of rat spinal wide-dynamic-range neurons. Neurosci Lett 2009, 459: 137–141.PubMedCrossRefGoogle Scholar
  19. [19]
    Kress M, Karasek J, Ferrer-Montiel AV, Scherbakov N, Haberberger RV. TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem Cell Biol 2008, 130: 655–667.PubMedCrossRefGoogle Scholar
  20. [20]
    Harteneck C, Gollasch M. Pharmacological modulation ofdiacyl-glycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 2011, 12: 35–41.PubMedCrossRefGoogle Scholar
  21. [21]
    Trebak M, Vazquez G, Bird GS, Putney JW Jr. The TRPC3/6/7 subfamily of cation channels. Cell Calcium 2003, 33: 451–461.PubMedCrossRefGoogle Scholar
  22. [22]
    Eder P, Groschner K. TRPC3/6/7: Topical aspects of biophysics and pharmacology. Channels 2008, 2: 94–99.PubMedCrossRefGoogle Scholar
  23. [23]
    Park SP, Kim BM, Koo JY, Cho H, Lee CH, Kim M, et al. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 2008, 137: 208–217.PubMedCrossRefGoogle Scholar
  24. [24]
    Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P. Differentialregulation of TRP channels in a rat model of neuropathic pain. Pain 2009, 144: 187–199.PubMedCrossRefGoogle Scholar
  25. [25]
    Alessandri-Haber N, Dina OA, Chen X, Levine JD. TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 2009, 29: 6217–6228.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jing Ding (丁静)
    • 1
  • Yong Xiao (肖勇)
    • 2
  • Dan Lu (吕丹)
    • 1
  • Yi-Ru Du (杜意如)
    • 1
  • Xiu-Yu Cui (崔秀玉)
    • 1
  • Jun Chen (陈军)
    • 1
    • 2
    Email author
  1. 1.Institute for Biomedical Sciences of PainCapital Medical UniversityBeijingChina
  2. 2.Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospitalthe Fourth Military Medical UniversityXi’anChina

Personalised recommendations