Advertisement

Neuroscience Bulletin

, 27:275 | Cite as

Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury

  • Daniel Alonso-Alconada
  • Antonia Alvarez
  • Enrique Hilario
Review

Abstract

Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.

Keywords

perinatal hypoxia-ischemia brain injury neuroprotective strategies endocannabinoid system 

大麻素在围产期缺血缺氧性脑损伤的保护作用

摘要

围产期缺血缺氧一直是引起新生儿脑损伤的首要因素, 往往导致死亡或终生后遗症。 由于新生儿缺血缺氧性脑损伤的病理复杂性, 目前还没有针对此病的特定疗法。 因此, 寻找新的神经保护性疗法正日益引起研究者的关注。 在哺乳动物体内, 大麻素系统能调节大范围的生理过程, 而且在不同类型的急性脑损伤中也具有神经保护作用。 近几年的研究表明, 内源性大麻素系统在围产期窒息中也扮演着神经保护者的角色。 本文主要就大麻素作为一种新的治疗策略在围产期缺血缺氧性脑损伤中的神经保护作用做一综述。

关键词

围产期缺血缺氧 脑损伤 神经保护策略 内源性大麻素系统 

References

  1. [1]
    Berger R, Garnier Y. Perinatal brain injury. J Perinat Med 2000, 28: 261–285.PubMedCrossRefGoogle Scholar
  2. [2]
    Volpe J. Perinatal brain injury: from pathogenesis to neuroprotection. Mental Retard Dev Disabil Res 2001, 7: 56–64.CrossRefGoogle Scholar
  3. [3]
    Low JA. Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res 2004, 30: 276–286.PubMedCrossRefGoogle Scholar
  4. [4]
    Vannuci S, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol 2004, 207: 3149–3154.CrossRefGoogle Scholar
  5. [5]
    de Hann M, Wyatt JS, Roth S, Vargha-Khadem F, Gadian D, Mishki M. Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci 2006, 9: 350–358.CrossRefGoogle Scholar
  6. [6]
    Torfs CP, van den Berg B, Oechsli FW, Cummins S. Prenatal and perinatal factors in the etiology of cerebral palsy. J Pediatr 1990, 116: 615–619.PubMedCrossRefGoogle Scholar
  7. [7]
    Mañeru C, Junque C, Botet F, Tallada M, Guardia J. Neuropsychological long-term sequelae of perinatal asphyxia. Brain Int 2001, 15: 1029–1039.CrossRefGoogle Scholar
  8. [8]
    Yager JY, Armstrong EA, Black AM. Treatment of the term newborn with brain injury: simplicity as the mother of invention. Pediatr Neurol 2009, 40: 237–243.PubMedCrossRefGoogle Scholar
  9. [9]
    Rivkin MJ. Hypoxic-ischemic brain injury in the term newborn: neuropathology, clinical aspects, and neuroimaging. Clin Perinatol 1997, 24: 607–626.PubMedGoogle Scholar
  10. [10]
    Volpe JJ. Hypoxic-ischemic encephalopathy. Clinical aspects. In: Volpe JJ (ed). Neurology of the Newborn. Philadelphia: WB Saunders Co, 1995: 314–369.Google Scholar
  11. [11]
    Nakaruma Y, Okureda T, Hashimoto T. Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol 1994, 53: 582–589.CrossRefGoogle Scholar
  12. [12]
    Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol 1998, 5: 135–151.PubMedCrossRefGoogle Scholar
  13. [13]
    Pourcyrous M. Cerebral hemodynamic measurements in acute versus chronic asphyxia. Clin Perinatol 1999, 26: 811–828.PubMedGoogle Scholar
  14. [14]
    Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the development window of vulnerability for human perinatal white matter injury. J Neurosci 2001, 21: 1302–1312.PubMedGoogle Scholar
  15. [15]
    Hilario E, Rey-Santano MC, Goñi-de-Cerio F, Alvarez FJ, Gastiasoro E, Mielgo VE, et al. Cerebral blood flow and morphological changes after hypoxic-ischaemic injury in preterm lambs. Acta Paediatr 2005, 94: 903–911.PubMedCrossRefGoogle Scholar
  16. [16]
    Shalak LF, Laptook AR, Velaphi SC, Perlman JM. Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 2003, 111: 351–357.PubMedCrossRefGoogle Scholar
  17. [17]
    Sanders RD, Manning HJ, Robertson NJ, Ma D, Edwards AD, Hagberg H, et al. Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology 2010, 113: 233–249.PubMedCrossRefGoogle Scholar
  18. [18]
    Perlman JM, Risser R. Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers? Pediatrics 1996, 97: 456–462.PubMedGoogle Scholar
  19. [19]
    Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, et al. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Rev 1999, 29: 137–168.PubMedCrossRefGoogle Scholar
  20. [20]
    Ferriero DM. Neonatal brain injury. N Engl J Med 2004, 351: 1985–1995.PubMedCrossRefGoogle Scholar
  21. [21]
    Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004, 1: 17–25.PubMedCrossRefGoogle Scholar
  22. [22]
    Edwards AD, Yue X, Cox P, Hope PL, Azzopardi DV, Squier MV, et al. Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatr Res 1997, 42: 684–689.PubMedCrossRefGoogle Scholar
  23. [23]
    Yue X, Mehmet H, Penrice J, Cooper C, Cady EB, Wyatt JS, et al. Apoptosis and necrosis in the newborn piglet brain following transient HI. Neuropathol Appl Neurobiol 1997, 23: 16–25.PubMedCrossRefGoogle Scholar
  24. [24]
    Esteve JM, Mompo J, García de la Asunción J, Satre J, Asensi M, Boix J, et al. Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis studies in vivo and in vitro. FASEB J 1999, 13: 1055–1064.PubMedGoogle Scholar
  25. [25]
    Taylor DL, Edwards AD, Mehmet H. Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 1999, 9: 93–117.PubMedCrossRefGoogle Scholar
  26. [26]
    Ohyu J, Endo A, Itoh M, Takashima S. Hypocapnia under hypotension induces apoptotic neuronal cell death in the hippocampus of newborn rabbits. Pediatric Res 2000, 48: 24–29.CrossRefGoogle Scholar
  27. [27]
    Hilario E, Alvarez A, Alvarez FJ, Gastiasoro E, Valls-i-Soler A. Cellular mechanisms in perinatal hypoxic-ischemic brain injury. Current Pediatr Rev 2006, 2: 131–141.CrossRefGoogle Scholar
  28. [28]
    Hilario E, Cañavate ML, Lacalle J, Alonso-Alconada D, Lara-Celador I, Alvarez-Granda L, et al. Cell death. A comprehensive approximation. Delayed cell death. In: Méndez-Vilas A, Díaz J (eds). Microscopy: Science, Technology, Applications and Education. Badajoz: Formatex Research Centre, 2010: 1025–1032.Google Scholar
  29. [29]
    Gunn AJ, Gunn T, de Haan H, Williams C, Gluckman P. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal sheep. J Clin Invest 1997, 99: 248–256.PubMedCrossRefGoogle Scholar
  30. [30]
    Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther 2008, 120: 43–53.PubMedCrossRefGoogle Scholar
  31. [31]
    Kelen D, Robertson NJ. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev 2010, 86: 369–377.PubMedCrossRefGoogle Scholar
  32. [32]
    Cilio MR, Ferriero DM. Synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med 2010, 15: 293–298.PubMedCrossRefGoogle Scholar
  33. [33]
    Nedelcu J, Klein MA, Aguzzi A, Martin E. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury. Brain Pathol 2000, 10: 61–71.PubMedCrossRefGoogle Scholar
  34. [34]
    Pabello NG, Tracy SJ, Keller RW Jr. Protective effects of brief intra- and delayed postischemic hypothermia in a transient focal ischemia model in the neonatal rat. Brain Res 2004, 995: 29–38.PubMedCrossRefGoogle Scholar
  35. [35]
    den Hertog H, van der Worp B, van Gemert M, Dippel D. Therapeutic hypothermia in acute ischemic stroke. Expert Rev Neurother 2007, 7: 155–164.CrossRefGoogle Scholar
  36. [36]
    Adachi M, Sohma O, Tsuneishi S, Takada S, Nakamura H. Combination effect of systemic hypothermia and cascase inhibitor administration against hypoxic-ischemic brain damage in neonatal rats. Pediatric Res 2001, 50: 590–595.CrossRefGoogle Scholar
  37. [37]
    Hashimoto T, Yonetani M, Nakamura H. Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical production. Kobe J Med Sci 2003, 49: 83–91.PubMedGoogle Scholar
  38. [38]
    Zhu C, Wang X, Cheng X, Qui L, Xu F, Simbruner G, et al. Postischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. Brain Res 2004, 996: 67–75.PubMedCrossRefGoogle Scholar
  39. [39]
    Wyatt JS, Gluckman PD, Liu PY, Azzopardi D, Ballard R, Edwards AD, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007, 119: 912–921.PubMedCrossRefGoogle Scholar
  40. [40]
    Palmer C, Towfighi J, Roberts RL, Heitjan DF. Allopurinol administered after inducing damage with HI reduces brain injury in 7 days old rats. Pediatr Res 1993, 33: 405–411.PubMedGoogle Scholar
  41. [41]
    Van Bel F, Shadid M, Moison RM, Dorrepaal CA, Fontijn J, Monteiro L, et al. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics 1998, 101: 185–193.PubMedCrossRefGoogle Scholar
  42. [42]
    Ferrari G, Yan CYI, Greene LA. Acetylcysteine (D- and L- sterioisomers) prevent apoptotic death of neuronal cells. J Neurosci 1995, 15: 2857–2866.PubMedGoogle Scholar
  43. [43]
    Yan CYI, Ferrari G, Greene LA. N-Acetylcysteine promoted survival of PC12 cells is glutathione independent but transcription dependent. J Biol Chem 1995, 270: 26827–26832.PubMedCrossRefGoogle Scholar
  44. [44]
    Jatana M, Singh I, Singh AK, Jenkins D. Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 2006, 59: 684–689.PubMedCrossRefGoogle Scholar
  45. [45]
    Lee TF, Jantzie LL, Todd KG, Cheung PY. Postresuscitation Nacetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Inten Care Med 2008, 34: 190–197.CrossRefGoogle Scholar
  46. [46]
    Sola A, Wen TC, Hamrick SE, Ferriero DM. Potential for protection and repair following injury to the developing brain: a role for erythropoietin. Pediatr Res 2005, 57: 110–117.CrossRefGoogle Scholar
  47. [47]
    Chang YS, Mu D, Wendland M, Sheldon RA, Vexler ZS, McQuillen PS, et al. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr Res 2005, 58: 106–111.PubMedCrossRefGoogle Scholar
  48. [48]
    Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 2007, 29: 321–330.PubMedCrossRefGoogle Scholar
  49. [49]
    Carloni S, Perrone S, Buonocore G, Longini M, Proietti F, Balduini W. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats. J Pineal Res 2008, 44: 157–164.PubMedCrossRefGoogle Scholar
  50. [50]
    Signorini C, Ciccoli L, Leoncini S, Carloni S, Perrone S, Comporti M, et al. Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: neuroprotective effect of melatonin. J Pineal Res 2009, 46: 148–154.PubMedCrossRefGoogle Scholar
  51. [51]
    Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM. Minocycline markedly protects the neonatal brain against hypoxicischemic injury. Ann Neurol 2002, 52: 54–61.PubMedCrossRefGoogle Scholar
  52. [52]
    Jantzie LL, Cheung PY, Todd KG. Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2005, 25: 314–325.PubMedCrossRefGoogle Scholar
  53. [53]
    Carloni S, Mazzoni E, Cimino M, De Simoni MG, Perego C, Scopa C, et al. Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 2006, 21: 119–126.PubMedCrossRefGoogle Scholar
  54. [54]
    Carloni S, Girelli S, Buonocore G, Longini M, Balduini W. Simvastatin acutely reduces ischemic brain damage in the immature rat via Akt and CREB activation. Exp Neurol 2009, 220: 82–89.PubMedCrossRefGoogle Scholar
  55. [55]
    Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003, 4: 873–884.PubMedCrossRefGoogle Scholar
  56. [56]
    Di Marzo V, Bisogno T, De Petrocellis L. Endocannabinoids and related compounds: walking back and forth between plant natural products and animal physiology. Chem Biol 2007, 14: 741–756.PubMedCrossRefGoogle Scholar
  57. [57]
    Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 2008, 108: 1687–1707.PubMedCrossRefGoogle Scholar
  58. [58]
    Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 2004, 247: 345–358.CrossRefGoogle Scholar
  59. [59]
    Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, et al. Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 2002, 277: 23278–23286.PubMedCrossRefGoogle Scholar
  60. [60]
    Craib SJ, Ellington HC, Pertwee RG, Ross RA. A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. Br J Pharmacol 2001, 134: 30–37.PubMedCrossRefGoogle Scholar
  61. [61]
    Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 1995, 232: 54–61.PubMedCrossRefGoogle Scholar
  62. [62]
    Núñez E, Benito C, Pazos MR, Barbachano A, Fajardo O, González S, et al. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 2004, 53: 208–213.PubMedCrossRefGoogle Scholar
  63. [63]
    Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005, 310: 329–332.PubMedCrossRefGoogle Scholar
  64. [64]
    Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 2006, 1074: 514–536.PubMedCrossRefGoogle Scholar
  65. [65]
    Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 2006, 1071: 10–23.PubMedCrossRefGoogle Scholar
  66. [66]
    Dewey WL. Cannabinoid Pharmacology. Pharmacol Rev 1986, 38: 151–178.PubMedGoogle Scholar
  67. [67]
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002, 54: 161–202.PubMedCrossRefGoogle Scholar
  68. [68]
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258: 1946–1949.PubMedCrossRefGoogle Scholar
  69. [69]
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995, 50: 83–90.PubMedCrossRefGoogle Scholar
  70. [70]
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995, 215: 89–97.PubMedCrossRefGoogle Scholar
  71. [71]
    Mackie K. Mechanisms of CB1 receptor signalling: endocannabinoid modulation of synaptic strength. Int J Obesity 2006, 30: 19–23.CrossRefGoogle Scholar
  72. [72]
    Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, et al. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A 2001, 98: 3662–3665.PubMedCrossRefGoogle Scholar
  73. [73]
    Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 2002, 301: 1020–1024.PubMedCrossRefGoogle Scholar
  74. [74]
    Bisogno T, Melck D, Bobrov MY, Gretskaya NM, Bezuglov VV, De Petrocellis L, et al. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J 2000, 3: 817–824.CrossRefGoogle Scholar
  75. [75]
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 2002, 99: 8400–8405.PubMedCrossRefGoogle Scholar
  76. [76]
    Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Martinez S, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 1994, 350: 240–244.PubMedCrossRefGoogle Scholar
  77. [77]
    Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 1998, 284: 644–650.PubMedGoogle Scholar
  78. [78]
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988, 34: 605–613.PubMedGoogle Scholar
  79. [79]
    Bell MR, D’Ambra TE, Kumar V, Eissenstat MA, Herrman JL. Antinociceptive (aminoalkyl)-indoles. J Med Chem 1991, 34: 1099–1110.PubMedCrossRefGoogle Scholar
  80. [80]
    Jansen EM, Haycock DA, Ward SJ, Seybold VS. Distribution of cannabinoid receptors in rat brain determined with aminoalkylindoles. Brain Res 1992, 575: 93–102.PubMedCrossRefGoogle Scholar
  81. [81]
    Kuster JE, Stevenson JI, Ward SJ, D’Ambra TE, Haycock DA. Aminoalkylindole binding in rat cerebellum: selective displacement by natural and synthetic cannabinoids. J Pharmacol Exp Ther 1993, 264: 1352–1363.PubMedGoogle Scholar
  82. [82]
    Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994, 372: 686–691.PubMedCrossRefGoogle Scholar
  83. [83]
    Cravatt BF, Lichtman AH. The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol 2004, 61: 149–160.PubMedCrossRefGoogle Scholar
  84. [84]
    Ueda N. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat 2002, 68–69: 521–534.PubMedCrossRefGoogle Scholar
  85. [85]
    Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 2001, 276: 35552–35557.PubMedCrossRefGoogle Scholar
  86. [86]
    Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci 2005, 62: 708–716.PubMedCrossRefGoogle Scholar
  87. [87]
    Kozak KR, Marnett LJ. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 2002, 66: 211–220.PubMedCrossRefGoogle Scholar
  88. [88]
    Saario SM, Savinainen JR, Laitinen JT, Järvinen T, Niemi R. Monoglyceride lipase-like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem Pharmacol 2004, 67: 1381–1387.PubMedCrossRefGoogle Scholar
  89. [89]
    Dinh TP, Kathuria S, Piomelli D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol Pharmacol 2004, 66: 1260–1264.PubMedCrossRefGoogle Scholar
  90. [90]
    Paria BC, Dey SK. Ligand-receptor signaling with endocannabinoids in preimplantation embryo development and implantation. Chem Phys Lipids 2000, 108: 211–220.PubMedCrossRefGoogle Scholar
  91. [91]
    Fernandez-Ruiz J, Berrendero F, Hernandez ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci 2000, 23: 14–20.PubMedCrossRefGoogle Scholar
  92. [92]
    Berrendero F, Sepe N, Ramos JA, Di Marzo V, Fernández-Ruiz JJ. Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse 1999, 33: 181–191.PubMedCrossRefGoogle Scholar
  93. [93]
    Romero J, Garcia-Palomero E, Berrendero F, Garcia-Gil L, Hernández ML, Ramos JA, et al. Atypical localization of cannabinoid receptors in white matter areas during rat brain development. Synapse 1997, 26: 317–323.PubMedCrossRefGoogle Scholar
  94. [94]
    Biegon A, Kerman IA. Autoradiographic study of pre- and postnatal distribution of cannabinoid receptors in human brain. Neuroimage 2001, 14: 1463–1468.PubMedCrossRefGoogle Scholar
  95. [95]
    Mato S, Del Olmo E, Pazos A. Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. Eur J Neurosci 2003, 17: 1747–1754.PubMedCrossRefGoogle Scholar
  96. [96]
    Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science 2002, 296: 678–682.PubMedCrossRefGoogle Scholar
  97. [97]
    Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 2001, 29: 729–738.PubMedCrossRefGoogle Scholar
  98. [98]
    Kyrou I, Valsamakis G, Tsigos C. The endocannabinoid system as a target for the treatment of visceral obesity and metabolic syndrome. Ann N Y Acad Sci 2006, 1083: 270–305.PubMedCrossRefGoogle Scholar
  99. [99]
    Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998, 21: 521–528.PubMedCrossRefGoogle Scholar
  100. [100]
    Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 2001, 31: 463–475.PubMedCrossRefGoogle Scholar
  101. [101]
    Galve-Roperh I, Aguado T, Palazuelos J, Guzmán M. Mechanisms of control of neuron survival by the endocannabinoid system. Curr Pharm Des 2008, 14: 2279–2288.PubMedCrossRefGoogle Scholar
  102. [102]
    Gerdeman G, Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 2001, 85: 468–471.PubMedGoogle Scholar
  103. [103]
    Galante M, Diana MA. Group I metabotropic glutamate receptors inhibit GABA release atinterneuron-Purkinje cell synapses through endocannabinoid production. J Neurosci 2004, 24: 4865–4874.PubMedCrossRefGoogle Scholar
  104. [104]
    Domenici MR, Azad SC, Marsicano G, Schierloh A, Wotjak CT, Dodt HU, et al. Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 2006, 26: 5794–5799.PubMedCrossRefGoogle Scholar
  105. [105]
    Nemeth B, Ledent C, Freund TF, Hajos N. CB1 receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2. Neuropharmacology 2008, 54: 51–57.PubMedCrossRefGoogle Scholar
  106. [106]
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide? superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995, 92: 7162–7166.PubMedCrossRefGoogle Scholar
  107. [107]
    Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999, 19: 4544–4558.PubMedGoogle Scholar
  108. [108]
    Hajos N, Katona I, Naiem SS, Mackie K, Ledent C, Mody I, et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 2000, 12: 3239–3249.PubMedCrossRefGoogle Scholar
  109. [109]
    Pellegrini-Giampietro DE, Mannaioni G, Bagetta G. Post-ischemic brain damage: the endocannabinoid system in the mechanisms of neuronal death. FEBS J 2009, 276: 2–12.PubMedCrossRefGoogle Scholar
  110. [110]
    Ozaita A, Puighermanal E, Maldonado R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 2007, 102: 1105–1114.PubMedCrossRefGoogle Scholar
  111. [111]
    Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signalling. Physiol Rev 2003, 83: 1017–1066.PubMedGoogle Scholar
  112. [112]
    Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006, 58: 389–462.PubMedCrossRefGoogle Scholar
  113. [113]
    Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol 2004, 141: 775–785.PubMedCrossRefGoogle Scholar
  114. [114]
    Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 2005, 5: 400–411.PubMedCrossRefGoogle Scholar
  115. [115]
    Hampson AJ, Grimaldi M, Lolic M, Wink D, Rosenthal R, Axelrod J. Neuroprotective antioxidants from marijuana. Ann N Y Acad Sci 2000, 899: 274–282.PubMedCrossRefGoogle Scholar
  116. [116]
    Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999, 19: 2987–2995.PubMedGoogle Scholar
  117. [117]
    Louw DF, Yang FW, Sutherland GR. The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res 2000, 857: 183–187.PubMedCrossRefGoogle Scholar
  118. [118]
    Braida D, Pozzi M, Sala M. CP 55,940 protects against ischemiainduced electroencephalographic flattening and hyperlocomotion in Mongolian gerbils. Neurosci Lett 2000, 296: 69–72.PubMedCrossRefGoogle Scholar
  119. [119]
    Mauler F, Hinz V, Augstein KH, Fassbender M, Horvath E. Neuroprotective and brain edema reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res 2003, 989: 99–111.PubMedCrossRefGoogle Scholar
  120. [120]
    Leker RR, Gai N, Mechoulam R, Ovadia H. Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 2003, 34: 2000–2006.PubMedCrossRefGoogle Scholar
  121. [121]
    Hayakawa K, Mishima K, Abe K, Hasebe N, Takamatsu F, Yasuda H, et al. Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism. Neuroreport 2004, 15: 2381–2385.PubMedCrossRefGoogle Scholar
  122. [122]
    Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 2002, 22: 9771–9775.PubMedGoogle Scholar
  123. [123]
    van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bar PR, et al. Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 2001, 21: 8765–8771.PubMedGoogle Scholar
  124. [124]
    Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A, et al. The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 2006, 22: 257–264.PubMedCrossRefGoogle Scholar
  125. [125]
    Schomacher M, Müller HD, Sommer C, Schwab S, Schäbitz WR. Endocannabinoids mediate neuroprotection after transient focal cerebral ischemia. Brain Res 2008, 1240: 213–220.PubMedCrossRefGoogle Scholar
  126. [126]
    Melis M, Pillolla G, Bisogno T, Minassi A, Petrosino S, Perra S, et al. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol Dis 2006, 24: 15–27.PubMedCrossRefGoogle Scholar
  127. [127]
    Zani A, Braida D, Capurro V, Sala M. Delta9-tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors. Br J Pharmacol 2007, 152: 1301–1311.PubMedCrossRefGoogle Scholar
  128. [128]
    Degn M, Lambertsen KL, Petersen G, Meldgaard M, Artmann A, Clausen BH, et al. Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice. J Neurochem 2007, 103: 1907–1916.PubMedCrossRefGoogle Scholar
  129. [129]
    Waksman Y, Olson JM, Carlisle SJ, Cabral GA. The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 1999, 288: 1357–1366.PubMedGoogle Scholar
  130. [130]
    Klein TW, Lane B, Newton CA, Friedman H. The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 2000, 225: 1–8.PubMedCrossRefGoogle Scholar
  131. [131]
    Grundy RI, Rabuffetti M, Beltramo M. Cannabinoids and neuroprotection. Mol Neurobiol 2001, 24: 29–51.PubMedCrossRefGoogle Scholar
  132. [132]
    Mechoulam R, Panikashvili D, Shohami E. Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 2002, 8: 58–61.PubMedCrossRefGoogle Scholar
  133. [133]
    Fernandez-Lopez D, Martinez-Orgado J, Nuñez E, Romero J, Lorenzo P, Moro MA, et al. Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res 2006, 60: 169–173.PubMedCrossRefGoogle Scholar
  134. [134]
    Martinez-Orgado J, Fernandez-Lopez D, Lizasoain I, Romero J. The seek of neuroprotection: introducing cannabinoids. Recent Pat CNS Drug Discov 2007, 2: 131–139.PubMedCrossRefGoogle Scholar
  135. [135]
    Alonso-Alconada D, Alvarez FJ, Alvarez A, Mielgo VE, Goñi-de-Cerio F, Rey-Santano MC, et al. The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxicischemic injury in fetal lambs. Brain Res 2010, 1362: 150–159.PubMedCrossRefGoogle Scholar
  136. [136]
    Gazzolo D, Vinesi P, Bartocci M, Geloso MC, Bonacci W, Serra G, et al. Elevated S100 blood levels as an early indicator of intraventricular haemorrhage in preterm infants. Correlation with cerebral Doppler velocimetry. J Neurol Sci 1999, 170: 32–35.PubMedCrossRefGoogle Scholar
  137. [137]
    Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L. Brainspecific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 2001, 90: 1171–1175.PubMedCrossRefGoogle Scholar
  138. [138]
    Böttiger BW, Möbes S, Glätzer R, Bauer H, Gries A, Bärtsch P, et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 2001, 103: 2694–2698.PubMedGoogle Scholar
  139. [139]
    Thorngren-Jerneck K, Alling C, Herbst A, Amer-Wahlin I, Marsal K. S100 protein in serum as a prognostic marker for cerebral injury in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 2004, 55: 406–412.PubMedCrossRefGoogle Scholar
  140. [140]
    Goñi-de-Cerio F, Alvarez A, Alvarez FJ, Rey-Santano MC, Alonso-Alconada D, Mielgo VE, et al. MgSO4 treatment preserves the ischemia-induced reduction in S-100 protein without modification of the expression of endothelial tight junction molecules. Histol Histopathol 2009, 24: 1129–1138.PubMedGoogle Scholar
  141. [141]
    Fernández-López D, Pazos MR, Tolón RM, Moro MA, Romero J, Lizasoain I, et al. The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn rats. Pediatr Res 2007, 62: 255–260.PubMedCrossRefGoogle Scholar
  142. [142]
    Fernández-López D, Pradillo JM, García-Yébenes I, Martínez-Orgado JA, Moro MA, Lizasoain I. The cannabinoid WIN55212-2 promotes neural repair after neonatal hypoxia-ischemia. Stroke 2010, 41: 2956–2964.PubMedCrossRefGoogle Scholar
  143. [143]
    Fernández-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 2007, 28: 39–45.PubMedCrossRefGoogle Scholar
  144. [144]
    Ashton JC, Rahman RMA, Nair SM, Sutherland BA, Glass M, Appleton I. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoide CB2 receptor in the brain. Neurosci Lett 2007, 412: 114–117.PubMedCrossRefGoogle Scholar
  145. [145]
    Mauler F, Horvath E, De Vry J, Jager R, Schwarz T, Sandmann S, et al. BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev 2003, 9: 343–358.PubMedCrossRefGoogle Scholar
  146. [146]
    Ni X, Geller EB, Eppihimer MJ, Eisenstein TK, Adler MW, Tuma RF. WIN 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler 2004, 10: 158–164.PubMedCrossRefGoogle Scholar
  147. [147]
    Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005, 25: 1904–1913.PubMedCrossRefGoogle Scholar
  148. [148]
    Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 2005, 95: 437–445.PubMedCrossRefGoogle Scholar
  149. [149]
    Fernández-Ruiz J, Pazos MR, Garcia-Arencibia M, Sagredo O, Ramos JA. Role of CB2 receptors in neuroprotective effects of cannabinoids. Mol Cell Endocrinol 2008, 286: 91–96.CrossRefGoogle Scholar
  150. [150]
    Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 2010, 37: 434–440.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Alonso-Alconada
    • 1
  • Antonia Alvarez
    • 1
  • Enrique Hilario
    • 1
  1. 1.Department of Cell Biology and Histology, School of Medicine and DentistryUniversity of the Basque Country, LeioaVizcayaSpain

Personalised recommendations