Neuroscience Bulletin

, Volume 26, Issue 6, pp 445–454 | Cite as

Role of vitamin D in immune responses and autoimmune diseases, with emphasis on its role in multiple sclerosis



Vitamin D is a seco-steroid involved in calcium and phosphorus metabolism, and bone formation and mineralization, through binding to a specific nuclear receptor, vitamin D receptor (VDR). Besides its well-established functions on bone health, multiple lines of evidence have indicated the immunomodulatory roles of vitamin D. Vitamin D can affect both innate and adaptive immunity, and prevent autoimmune responses efficiently. Vitamin D regulates the immune responses by suppressing T cell proliferation and modulating macrophage functions. Epidemiological studies have shown that vitamin D deficiency is associated with multiple diseases such as rickets and cancer. Moreover, associations between vitamin D and autoimmune diseases have been confirmed in multiple sclerosis (MS), rheumatoid arthritis (RA), etc. The present review mainly summarized the recent findings on the immunomodulatory role of vitamin D in various disorders, with special focus on its role in MS, an autoimmune disease of the nervous system.


vitamin D autoimmune disease multiple sclerosis 

维生素D 在免疫反应和自身免疫性疾病特别是多发性硬化中的作用


维生素D 是一种类固醇衍生物, 其通过与特异性核受体结合, 在钙磷代谢、 骨质形成与矿化中发挥重要作用。 除此之外, 大量证据表明维生素D 具有免疫调节作用。 维生素D 能调节天然免疫与获得性免疫, 有效抑制自身免疫反应。 研究表明, 维生素D 是通过抑制T 细胞增殖和调节巨噬细胞功能来发挥免疫调节作用的。 流行病学调查发现, 维生素D缺乏与多种疾病相关。 维生素D缺乏与自身免疫性疾病的关系在多发性硬化和类风湿性关节炎中得到证实。 本文主要总结了维生素D在人类疾病中的免疫调节作用, 尤其强调其在神经系统自身免疫性疾病 — 多发性硬化中的重要作用。


维生素D 自身免疫性疾病 多发性硬化 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Nowson CA, Diamond TH, Pasco JA, Mason RS, Sambrook PN, Eisman JA. Vitamin D in Australia. Aust Fam Physician 2004, 33: 133–138.PubMedGoogle Scholar
  2. [2]
    Holick MF. Vitamin D: a D-lightful health perspective. Nutr Rev 2008, 66: s182–s194.PubMedGoogle Scholar
  3. [3]
    Tucker KL. Osteoporosis prevention and nutrition. Curr Osteoporos Rep 2009, 7: 111–117.PubMedGoogle Scholar
  4. [4]
    Cantorna MT. Vitamin D and multiple sclerosis: an update. Nutr Rev 2008, 66: s135–s138.PubMedGoogle Scholar
  5. [5]
    Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 2010, 68: 193–203.PubMedGoogle Scholar
  6. [6]
    Pierrot-Deseilligny C, Souberbielle JC. Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis? Brain 2010, 133: 1869–1888.PubMedGoogle Scholar
  7. [7]
    Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol 2010, 9: 599–612.PubMedGoogle Scholar
  8. [8]
    Handunnetthi L, Ramagopalan SV, Ebers GC. Multiple sclerosis, vitamin D, and HLA-DRB1*15. Neurology 2010, 74: 1905–1910.PubMedGoogle Scholar
  9. [9]
    Anderson PH, O’Loughlin PD, May BK, Morris HA. Determinants of circulating 1,25-dihydroxyvitamin D3 levels: the role of renal synthesis and catabolism of vitamin D. J Steroid Biochem Mol Biol 2004, 89–90: 111–113.PubMedGoogle Scholar
  10. [10]
    Baldock PA, Thomas GP, Hodge JM, Baker SU, Dressel U, O’Loughlin PD, et al. Vitamin D action and regulation of bone remodeling: suppression of osteoclastogenesis by the mature osteoblast. J Bone Miner Res 2006, 21: 1618–1626.PubMedGoogle Scholar
  11. [11]
    van Driel M, Koedam M, Burman CJ, Hewison M, Chiba H, Uitterlinden AG, et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J 2006, 20: 2417–2419.PubMedGoogle Scholar
  12. [12]
    Bischoff-Ferrari HA. Vitamin D and muscle function. Int Congr Ser 2007, 1297: 143–147.Google Scholar
  13. [13]
    Houston DK, Cesari M, Ferruci L, Cherubini A, Maggio D, Bartali B, et al. Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2007, 62: 440–446.PubMedGoogle Scholar
  14. [14]
    Cantorna MT, Hayhes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 1998, 128: 68–72.PubMedGoogle Scholar
  15. [15]
    Holick MF. Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol 2006, 92: 49–59.PubMedGoogle Scholar
  16. [16]
    Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, et al. The role of vitamin D in cancer prevention. Am J Public Health 2006, 96: 252–261.PubMedGoogle Scholar
  17. [17]
    Michos ED, Melamed ML. Vitamin D and cardiovascular disease risk. Curr Opin Clin Nutr Metab Care 2008, 11: 7–12.PubMedGoogle Scholar
  18. [18]
    Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007, 115: 846–854.PubMedGoogle Scholar
  19. [19]
    Zittermann A, Koerfer R. Vitamin D in the prevention and treatment of coronary heart disease. Curr Opin Clin Nutr Metab Care 2008, 11: 752–757.PubMedGoogle Scholar
  20. [20]
    Forman JP, Curhan GC, Taylor EN. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension 2008, 52: 828–832.PubMedGoogle Scholar
  21. [21]
    Margolis KL, Ray RM, Van Horn L, Manson JE, Allison MA, Black HR, et al. Effect of calcium and vitamin D supplementation on blood pressure: the Women’s Health Initiative Randomized Trial. Hypertension 2008, 52: 847–855.PubMedGoogle Scholar
  22. [22]
    Gregori G, Giarratana N, Smiroldo S, Uskokovic M, Adorini L. A 1alpha, 25-dihydroxyvitamin D3 analog enhances regulatory T cells and arrests autoimmune diabetes in NOD mice. Diabetes 2002, 51: 1374–1376.Google Scholar
  23. [23]
    Laaksi I, Ruohola JP, Tuohimaa P, Auvinen A, Haataja R, Pihlajamäki H, et al. An association of serum vitamin D concentrations <40 nmol/L with acute respiratory tract infection in young Finnish men. Am J Clin Nutr 2007, 86: 714–717.PubMedGoogle Scholar
  24. [24]
    Melamed ML, Michos ED, Post W, Astor B. 25-Hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 2008, 168: 1629–1637.PubMedGoogle Scholar
  25. [25]
    Lui PT, Strenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311: 1770–1773.Google Scholar
  26. [26]
    Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest 1984, 74: 1451–1455.PubMedGoogle Scholar
  27. [27]
    Maruotti N, Cantatore FP. Vitamin D and the Immune System. J Rheumatol 2010, 37: 491–495.PubMedGoogle Scholar
  28. [28]
    Cutolo M, Otsa K. Review: vitamin D, immunity and lupus. Lupus 2008, 17: 6–10.PubMedGoogle Scholar
  29. [29]
    Baeke F, Van Etten E, Overbergh L, Mathieu C. Vitamin D3 and the immune system: maintaining the balance in health and disease. Nutr Res Rev 2007, 20: 106–118.PubMedGoogle Scholar
  30. [30]
    Cutolo M, Otsa K, Uprus M, Paolino S, Seriolo B. Vitamin D in rheumatoid arthritis. Autoimmun Rev 2007, 7: 59–64.PubMedGoogle Scholar
  31. [31]
    Garcion E, Nataf S, Berod A, Darcy F, Brachet P. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res 1997, 45: 255–267.PubMedGoogle Scholar
  32. [32]
    Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1 Alpha, 25-dihydroxyvitamin D3 has a direct effect on naïve CD4+ T cells to enhance the development of Th2 cells. J Immunol 2001, 167: 4974–4980.PubMedGoogle Scholar
  33. [33]
    Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem 2003, 89: 922–932.PubMedGoogle Scholar
  34. [34]
    Cantorna MT. Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence? Proc Soc Exp Biol Med 2000, 223: 230–233.PubMedGoogle Scholar
  35. [35]
    Meehan TF, DeLuca HF. CD8+ T cells are not necessary for 1 alpha,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2002, 99: 5557–5560.PubMedGoogle Scholar
  36. [36]
    Tang J, Zhou R, Luger D, Zhu W, Silver PB, Grajewski RS, et al. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol 2009, 182: 4624–4632.PubMedGoogle Scholar
  37. [37]
    Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 2007, 179: 1634–1647.PubMedGoogle Scholar
  38. [38]
    Cantorna MT, Humpal-Winter J, DeLuca HF. In vivo upregulation of interleukin-4 is one mechanism underlying the immunoregulatory effects of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 2000, 377: 135–138.PubMedGoogle Scholar
  39. [39]
    Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000, 164: 2405–2411.PubMedGoogle Scholar
  40. [40]
    Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E, et al. Vitamin D3affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 2000, 164: 4443–4451.PubMedGoogle Scholar
  41. [41]
    Almerighi C, Sinistro A, Cavazza A, Ciaprini C, Rocchi G, Bergamini A. 1Alpha,25-dihydroxyvitamin D3inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine 2009, 45: 190–197.PubMedGoogle Scholar
  42. [42]
    Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/ Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther 2008, 324: 23–33.PubMedGoogle Scholar
  43. [43]
    Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L. Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001, 167: 1945–1953.PubMedGoogle Scholar
  44. [44]
    Cantorna MT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med 2004, 229: 1136–1142.Google Scholar
  45. [45]
    Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitamin D3is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004, 173: 2909–2912.PubMedGoogle Scholar
  46. [46]
    Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly upregulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005, 19: 1067–1077.PubMedGoogle Scholar
  47. [47]
    Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009, 63: 287–303.PubMedGoogle Scholar
  48. [48]
    Shi J, Zhao CB, Vollmer TL. APOE epsilon 4 allele is associated with cognitive impairment in patients with multiple sclerosis. Neurology 2008, 70: 185–190.PubMedGoogle Scholar
  49. [49]
    Mistry M, Clay M, Kelly M, Steiner MA, Harmony JA. Apolipoprotein E restricts interleukin dependent T lymphocyte proliferation at the G1A/G1B boundary. Cell Immunol 1995, 160: 14–23.PubMedGoogle Scholar
  50. [50]
    Avila EM, Holdsworth G, Sasaki N, Jackson RL, Harmony JA. Apoprotein E suppresses phytohemagglutinin-activated phospholipid turnover in peripheral blood mononuclear cells. J Biol Chem 1982, 257: 5900–5909.PubMedGoogle Scholar
  51. [51]
    Gerdes LU. The common polymorphism of apolipoprotein E: Geographical aspects and new pathophysiological relations. Clin Chem Lab Med 2003, 41: 628–631.PubMedGoogle Scholar
  52. [52]
    Beretich BD, Beretich TM. Explaining multiple sclerosis prevalence by ultraviolet exposure: a geospatial analysis. Mult Scler 2009, 15: 891–898.PubMedGoogle Scholar
  53. [53]
    Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999, 96: 507–515.PubMedGoogle Scholar
  54. [54]
    Lips P. Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 2010, 121: 297–300.PubMedGoogle Scholar
  55. [55]
    Ponsonby AL, Lucas RM, van der Mei IA. UVR, vitamin D and three autoimmune diseases-multiple sclerosis, type 1 diabetes, rheumatoid arthritis. Photochem Photobiol 2005, 81: 1267–1275.PubMedGoogle Scholar
  56. [56]
    Munger KL, Zhang SM, O’Reilly E, Hernán MA, Olek MJ, Willett WC, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004, 62: 60–65.PubMedGoogle Scholar
  57. [57]
    Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006, 296: 2832–2838.PubMedGoogle Scholar
  58. [58]
    Miheller P, Muzes G, Hritz I, Lakatos G, Pregun I, Lakatos PL, et al. Comparison of the effects of 1,25 dihydroxyvitamin D and 25 hydroxyvitamin D on bone pathology and disease activity in Crohn’s disease patients. Inflamm Bowel Dis 2009, 15: 1656–1662.PubMedGoogle Scholar
  59. [59]
    Hypponen E, Reunanen A, Jarvelin MR, Järvelin MR, Virtanen SM. Intake of vitamin D and risk of type 1 diabetes: a birthcohort study. Lancet 2001, 358: 1500–1503.PubMedGoogle Scholar
  60. [60]
    Littorin B, Blom P, Scholin A, Arnqvist HJ, Blohmé G, Bolinder J, et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS). Diabetologia 2006, 49: 2847–2852.PubMedGoogle Scholar
  61. [61]
    Kamen DL, Cooper GS, Bouali H, Shaftman SR, Hollis BW, Gilkeson GS. Vitamin D deficiency in systemic lupus erythematosus. Autoimmun Rev 2006, 5: 114–117.PubMedGoogle Scholar
  62. [62]
    Ruiz-Irastorza G, Egurbide MV, Olivares N, Martinez-Berriotxoa A, Aguirre C. Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology 2008, 47: 920–923.PubMedGoogle Scholar
  63. [63]
    Litonjua AA, Weiss ST. Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol 2007, 120: 1031–1035.PubMedGoogle Scholar
  64. [64]
    Patel S, Farragher T, Berry J, Bunn D, Silman A, Symmons D. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum 2007, 56: 2143–2149.PubMedGoogle Scholar
  65. [65]
    Zold E, Szodoray P, Gaal J, Kappelmayer J, Csathy L, Gyimesi E, et al. Vitamin D deficiency in undifferentiated connective tissue disease. Arthritis Res Ther 2008, 10: R123.PubMedGoogle Scholar
  66. [66]
    Fukazawa T, Yabe I, Kikuchi S, Sasaki H, Hamada T, Miyasaka K, et al. Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese. J Neurol Sci 1999, 166: 47–52.PubMedGoogle Scholar
  67. [67]
    Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut 2000, 47: 211–214.PubMedGoogle Scholar
  68. [68]
    Garcia-Lozano JR, Gonzalez-Escribano MF, Valenzuela A, Garcia A, Núñez-Roldán A. Association of vitamin D receptor genotypes with early onset rheumatoid arthritis. Eur J Immunogenet 2001, 28: 89–93.PubMedGoogle Scholar
  69. [69]
    Motohashi Y, Yamada S, Yanagawa T, Maruyama T, Suzuki R, Niino M, et al. Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes. J Clin Endocrinol Metab 2003, 88: 3137–3140.PubMedGoogle Scholar
  70. [70]
    Hullett DA, Cantorna MT, Redaelli C, Humpal-Winter J, Hayes CE, Sollinger HW, et al. Prolongation of allograft survival by 1, 25-dihydroxyvitamin D3. Transplantation 1998, 66: 824–828.PubMedGoogle Scholar
  71. [71]
    Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004, 80: s1678–s1688.Google Scholar
  72. [72]
    Compston A, Coles A. Multiple sclerosis. Lancet 2008, 372: 1502–1517.PubMedGoogle Scholar
  73. [73]
    Furlan R, Cuomo C, Martino G. Animal models of multiple sclerosis. Methods Mol Biol 2009, 549: 157–173.PubMedGoogle Scholar
  74. [74]
    Goldberg P. Multiple sclerosis: vitamin D and calcium as environmental determinants of prevalence (a viewpoint). Part 1: sunlight, dietary factors and epidemiology. Intern J Environ Stud 1974, 6: 19–27.Google Scholar
  75. [75]
    Hayes CE, Cantorna MT, Deluca HF. Vitamin D and multiple sclerosis. Proc Soc Exp Biol Med 1997, 216: 21–27.PubMedGoogle Scholar
  76. [76]
    McDowell TY, Amr S, Langenberg P, Royal W, Bever C, Culpepper WJ, et al. Time of birth, residential solar radiation and age at onset of multiple sclerosis. Neuroepidemiology 2010, 34: 238–244.PubMedGoogle Scholar
  77. [77]
    Craelius W. Comparative epidemiology of multiple sclerosis and dental caries. J Epidemiol Community Health 1978, 32: 155–165.PubMedGoogle Scholar
  78. [78]
    Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology 1994, 44: 1687–1692.PubMedGoogle Scholar
  79. [79]
    Becklund BR, Severson KS, Vang SV, DeLuca HF. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc Natl Acad Sci U S A 2010, 107: 6418–6423.PubMedGoogle Scholar
  80. [80]
    Fleming JO, Cook TD. Multiple sclerosis and the hygiene hypothesis. Neurology 2006, 67: 2085–2086.PubMedGoogle Scholar
  81. [81]
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 2007, 61: 288–299.PubMedGoogle Scholar
  82. [82]
    Auer DP, Schumann EM, Kumpfel T, Gossl C, Trenkwalder C. Seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 2000, 47: 276–277.PubMedGoogle Scholar
  83. [83]
    Wuthrich R, Rieder HP. The seasonal incidence of multiple sclerosis in Switzerland. Eur Neurol 1970, 3: 257–264.PubMedGoogle Scholar
  84. [84]
    Bamford CR, Sibley WA, Thies C. Seasonal variation of multiple sclerosis exacerbations in Arizona. Neurology 1983, 33: 697–701.PubMedGoogle Scholar
  85. [85]
    Embry AF, Snowdon LR, Vieth R. Vitamin D and seasonal fluctuations of gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 2000, 48: 271–272.PubMedGoogle Scholar
  86. [86]
    Tremlett H, van der Mei IA, Pittas F, Blizzard L, Paley G, Mesaros D, et al. Monthly ambient sunlight, infections and relapse rates in multiple sclerosis. Neuroepidemiology 2008, 31: 271–279.PubMedGoogle Scholar
  87. [87]
    Rovaris M, Comi G, Sormani MP, Wolinsky JS, Ladkani D, Filippi M. Effects of seasons on magnetic resonance imagingmeasured disease activity in patients with multiple sclerosis. Ann Neurol 2001, 49: 415–416.PubMedGoogle Scholar
  88. [88]
    Killestein J, Rep MH, Meilof JF, Adèr HJ, Uitdehaag BM, Barkhof F, et al. Seasonal variation in immune measurements and MRI markers of disease activity in MS. Neurology 2002, 58: 1077–1080.PubMedGoogle Scholar
  89. [89]
    Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 1993, 240: 417–422.PubMedGoogle Scholar
  90. [90]
    HS Panitch. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 1994, 36: s25–s28.Google Scholar
  91. [91]
    Soilu-Hanninen M, Airas L, Mononen I, Heikkila A, Viljanen M, Hanninen A. 25-Hydroxyvitamin D levels in serum at the onset of multiple sclerosis. Mult Scler 2005, 11: 266–271.PubMedGoogle Scholar
  92. [92]
    Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset MS. Ann Neurol 2010, 67: 618–624.PubMedGoogle Scholar
  93. [93]
    Pierrot-Deseilligny C. Clinical implications of a possible role of vitamin D in multiple sclerosis. J Neurol 2009, 256: 1478–1479.Google Scholar
  94. [94]
    Hiremath GS, Cettomai D, Baynes M, Ratchord JN, Newsome S, Harrison D, et al. Vitamin D status and effect of low-dose cholecalciferol and high-dose ergocalciferol supplementation in multiple sclerosis. Mult Scler 2009, 15: 735–740.PubMedGoogle Scholar
  95. [95]
    Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain 2009, 132: 1146–1160.PubMedGoogle Scholar
  96. [96]
    Kragt J, van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman Ch, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler 2009, 15: 9–15.PubMedGoogle Scholar
  97. [97]
    Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory aspects of vitamin D in multiple sclerosis. Brain 2009, 132: 1146–1160.PubMedGoogle Scholar
  98. [98]
    Smolders J, Thewissen M, Peelen E, Menheere P, Cohen Tervaert TW, Hupperts R, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 2009, 4: e6635.PubMedGoogle Scholar
  99. [99]
    Smolders J, Menheere P, Thewissen M, Peelen E, Cohen Tervaert JW, Hupperts R, et al. Regulatory T cell function correlates with serum 25-hydroxyvitamin D, but not with 1, 25-dihydroxyvita-min D, parathyroid hormone and calcium levels in patients with relapsing remitting multiple sclerosis. J Steroid Biochem Mol Biol 2010, 121(1–2): 243–246.PubMedGoogle Scholar
  100. [100]
    Royal W 3rd, Mia Y, Li H, Naunton K. Peripheral blood regulatory T cell measurements correlate with serum vitamin D levels in patients with multiple sclerosis. J Neuroimmunol 2009, 213: 135–141.PubMedGoogle Scholar
  101. [101]
    Burton JM, Kimball S, Vieth R, Bar-Or A, Dosch HM, Cheung R, et al. A phase I/II dose-escalation trial of vitamin D3and calcium in multiple sclerosis. Neurology 2010, 74: 1852–1859.PubMedGoogle Scholar
  102. [102]
    Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT. Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J Neuroimmunol 2003, 134: 128–132.PubMedGoogle Scholar
  103. [103]
    Spach KM, Nashold FE, Dittel BN, Hayes CE. IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 2006, 177: 6030–6037.PubMedGoogle Scholar
  104. [104]
    Nashold FE, Miller DJ, Hayes CE. 1,25-Dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2000, 103: 171–179.PubMedGoogle Scholar
  105. [105]
    Nataf S, Garcion E, Darcy F, Chabannes D, Muller JY, Brachet P. 1,25 Dihydroxyvitamin D3exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. J Neuropathol Exp Neurol 1996, 55: 904–914.PubMedGoogle Scholar
  106. [106]
    Branisteanu DD, Waer M, Sobis H, Marcelis S, Vandeputte M, Bouillon R. Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1 alpha, 25-(OH)2D3. J Neuroimmunol 1995, 61: 151–160.PubMedGoogle Scholar
  107. [107]
    Lemire JM, Archer DC. 1,25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 1991, 87: 1103–1107.PubMedGoogle Scholar
  108. [108]
    Becklund BR, Hansen DW Jr, Deluca HF. Enhancement of 1, 25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis by calcitonin, Proc Natl Acad Sci U S A 2009, 106: 5276–5281.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hong-Liang Zhang (张洪亮)
    • 1
  • Jiang Wu (吴江)
    • 1
  1. 1.Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations