Neuroscience Bulletin

, Volume 26, Issue 2, pp 140–146 | Cite as

Preventive effect of estrogen on depression-like behavior induced by chronic restraint stress

  • Wei Li (厉 蔚)
  • Qing-Jiao Li (李庆娇)
  • Shu-Cheng An (安书成)
Original Article



To investigate the roles of estrogen and kalirin-7 in chronic restraint stress (CRS)-induced depression and the pathophysiological mechanism of depression.


Healthy female mice from Institute of Cancer Research (ICR) were randomly divided into 3 groups: control group, CRS group, and estrogen + CRS group. CRS was used to establish the animal model of depression. Forced swimming test and immunohistochemistry method were utilized to investigate the animal behavior and kalirin-7 expression in the hippocampus, respectively.


Compared with the control group, the CRS mice displayed depression-like behaviors, including a significant reduction in body weight, a significant increase in immobility time in forced swimming test, and a dramatic decrease in kalirin-7 expression in the hippocampus. However, administration of estrogen attenuated the CRS-induced negative behaviors, and simultaneously increased kalirin-7 expression.


Estrogen replacement therapy (ERT) could prevent CRS-induced depression-like behaviors in female ICR mice. Besides, kalirin-7 also plays a role in preventing CRS-induced depression-like behaviors.


chronic restraint stress depression estrogen neural plasticity kalirin-7 




探讨雌激素和kalirin-7 在慢性束缚应激性抑郁发生中的作用。


采用慢性束缚应激性抑郁动物模型, 运用强迫游泳测试和免疫组织化学方法, 分别检测动物行为学表现及海马中kalirin-7 蛋白的表达。


慢性束缚应激能显著降低动物体重、 延长游泳不动时间、 抑制海马中kalirin-7 蛋白的表达。 注射雌激素能明显改善动物抑郁样行为, 并且海马kalirin-7 表达显著增加。


慢性束缚应激能诱发产生抑郁样行为, 而雌激素替代疗法则能预防慢性束缚应激性抑郁的发生。 此外, kalirin-7 在防止慢性束缚应激性抑郁的发生中起到重要作用。


慢性束缚应激 抑郁 雌激素 神经可塑性 kalirin-7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Holderbach R, Clark K, Moreau JL, Bischofberger J, Normann C. Enhanced long-term synaptic depression in an animal model of depression. Biol Psychiatry 2007, 62(1): 92–100.CrossRefPubMedGoogle Scholar
  2. [2]
    Ehlert U, Gaab J, Heinrichs M. Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus-pituitaryadrenal axis. Biol Psychol 2001, 57(1–3): 141–152.CrossRefPubMedGoogle Scholar
  3. [3]
    Lopez JF, Akil H, Watson SJ. Neural circuits mediating stress. Biol Psychiatry 1999, 46(11): 1461–1471.CrossRefPubMedGoogle Scholar
  4. [4]
    Akil HA, Morano MI. Stress. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: The fourth generation of progress. New York: Raven Press 1995: 773–785.Google Scholar
  5. [5]
    Levine S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 2005, 30(10): 939–946.CrossRefPubMedGoogle Scholar
  6. [6]
    Bowman RE, Beck KD, Luine VN. Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Horm Behav 2003, 43(1): 48–59.CrossRefPubMedGoogle Scholar
  7. [7]
    De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19(3): 269–301.CrossRefPubMedGoogle Scholar
  8. [8]
    McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000, 886(1–2): 172–189.CrossRefPubMedGoogle Scholar
  9. [9]
    Sapolsky RM, Krey LC, McEwen BS. Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A 1984, 81(19): 6174–6177.CrossRefPubMedGoogle Scholar
  10. [10]
    Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002, 53(4): 865–871.CrossRefPubMedGoogle Scholar
  11. [11]
    Young EA, Midgley AR, Carlson NE, Brown MB. Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch Gen Psychiatry 2000, 57(12): 1157–1162.CrossRefPubMedGoogle Scholar
  12. [12]
    Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996, 276(4): 293–299.CrossRefPubMedGoogle Scholar
  13. [13]
    Hayward C, Sanborn K. Puberty and the emergence of gender differences in psychopathology. J Adolesc Health 2002, 30(4 Suppl): 49–58.CrossRefPubMedGoogle Scholar
  14. [14]
    Bloch M, Daly RC, Rubinow DR. Endocrine factors in the etiology of postpartum depression. Compr Psychiatry 2003, 44(3): 234–246.CrossRefPubMedGoogle Scholar
  15. [15]
    Wittchen HU, Hoyer J. Generalized anxiety disorder: nature and course. J Clin Psychiatry 2001, 62(11): 15–19.PubMedGoogle Scholar
  16. [16]
    Ahokas A, Kaukoranta J, Wahlbeck K, Aito M. Estrogen deficiency in severe postpartum depression: successful treatment with sublingual physiologic 17β-estradiol: a preliminary study. J Clin Psychiatry 2001, 62(5): 332–336.PubMedCrossRefGoogle Scholar
  17. [17]
    Frye CA, Walf AA. Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 2002, 41(3): 306–315.CrossRefPubMedGoogle Scholar
  18. [18]
    Frye CA, Wawrzycki J. Effect of prenatal stress and gonadal hormone condition on depressive behaviors of female and male rats. Horm Behav 2003, 44(4): 319–326.CrossRefPubMedGoogle Scholar
  19. [19]
    Estrada-Camarena E, Fernandez-Guasti A, Lopez-Rubalcava C. Antidepressant-like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology 2003, 28(5): 830–838.PubMedGoogle Scholar
  20. [20]
    Nacher J, Pham K, Gil-Fernandez V, Mcewen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience 2004, 126(2): 503–509.CrossRefPubMedGoogle Scholar
  21. [21]
    Fossati P, Radtchenko A, Boyer P. Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004, 14(5): 503–510.CrossRefGoogle Scholar
  22. [22]
    Ziv NE, Smith SJ. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 1996, 17(1): 91–102.CrossRefPubMedGoogle Scholar
  23. [23]
    Fiala JC, Feinberg M, Popov V, Harris KM. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 1998, 18(21): 8900–8911.PubMedGoogle Scholar
  24. [24]
    Alam MR, Johnson RC, Darlington DN, Hand TA, Mains RE, Eipper BA. Kalirin-7, a cytosolic protein with Spectrin-like and GDP/GTP exchange factor-like domains that interacts with Peptidylglycine α-amidating monooxygenase, and integral membrane peptideprocessing enzyme. J Biol Chem 1997, 272(19): 12667–12675.CrossRefPubMedGoogle Scholar
  25. [25]
    Johnson RC, Penzes P, Eipper BA, Mains RE. Isoforms of Kalirin-7, a neuronal Dbl family member, generated through the use ofdifferent 50- and 30-ends along with an internal translational initiation site. J Biol Chem 2000, 275(25): 19324–19333.CrossRefPubMedGoogle Scholar
  26. [26]
    Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE. An isoform of kalirin-7, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 2000, 275(9): 6395–6403.CrossRefPubMedGoogle Scholar
  27. [27]
    Penzes P, Johnson RC, Sattler R, Zhang X, Huganir RL, Kambampati V, et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 2001, 29(1): 229–242.CrossRefPubMedGoogle Scholar
  28. [28]
    Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin-7. Neuron 2003, 37(2): 263–274.CrossRefPubMedGoogle Scholar
  29. [29]
    Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977, 299(2): 327–336.Google Scholar
  30. [30]
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th edition. New York: Academic Press, 1998.Google Scholar
  31. [31]
    Nemeroff CB. The neurobiology of depression. Sci Am 1998, 278(6): 42–49.CrossRefPubMedGoogle Scholar
  32. [32]
    Zardooz H, Zahedi Asl S, Gharib Naseri MK, Hedayati M. Effect of chronic restraint stress on carbohydrate metabolism in rat. Physiol Behav 2006, 89(3): 373–378.CrossRefPubMedGoogle Scholar
  33. [33]
    Matthews K, Forbes N, Reid IC. Sucrose consumption as an hedonic measure following chronic unpredictable mild stress. Physiol Behav 1995, 57(2): 241–248.CrossRefPubMedGoogle Scholar
  34. [34]
    Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005, 4(9): 775–790.CrossRefPubMedGoogle Scholar
  35. [35]
    Hunter AJ, Nolan PM, Brown SD. Towards new models of disease and physiology in the neurosciences: the role of induced and naturally occurring mutations. Hum Mol Genet 2000, 9(6): 893–900.CrossRefPubMedGoogle Scholar
  36. [36]
    Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002, 52(6): 503–528.CrossRefPubMedGoogle Scholar
  37. [37]
    Gregus A, Wintink AJ, Davis AC, Kalynchuk LE. Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 2005, 156(1): 105–114.CrossRefPubMedGoogle Scholar
  38. [38]
    Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999, 46(9): 1181–1191.CrossRefPubMedGoogle Scholar
  39. [39]
    Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001, 35(2): 5–49.PubMedGoogle Scholar
  40. [40]
    Ma XM, Johnson RC, Mains RE, Eipper BA. Expression of kalirin-7, a neuronal GDP/GTP exchange factor of the trio family, in the central nervous system of the adult rat. J Comp Neurol 2001, 429(3): 388–402.CrossRefPubMedGoogle Scholar
  41. [41]
    Ma XM, Huang J, Wang Y, Eipper BA, Mains RE. Kalirin-7, a multifunctional Rho uanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines. J Neurosci 2003, 23(33): 10593–10603.PubMedGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wei Li (厉 蔚)
    • 1
  • Qing-Jiao Li (李庆娇)
    • 1
  • Shu-Cheng An (安书成)
    • 1
  1. 1.Institute of Brain and Behavior Science, College of Life ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations