Neuroscience Bulletin

, Volume 25, Issue 5, pp 277–282

Neuroimaging study of placebo analgesia in humans

  • Yun-Hai Qiu (秋云海)
  • Xin-Yin Wu (吴心音)
  • Hao Xu (徐昊)
  • David Sackett
Minireview

Abstract

Placebo has been reported to exert beneficial effects in patients regarding the treatment of pain. Human functional neuroimaging technology can study the intact human brain to elucidate its functional neuroanatomy and the neurobiological mechanism of the placebo effect. Blood flow measurement using functional magnetic resonance imaging and positron emission tomography (PET) has revealed that analgesia is related to decreased neural activities in pain-modulatory brain regions, such as the rostral anterior cingulate cortex (rACC), insula, thalamus, and brainstem including periaqueductal gray (PAG) and ventromedial medulla. The endogenous opioid system and its activation of μ-opioid receptors are thought to mediate the observed effects of placebo. The μ-opioid receptor-selective radiotracer-labeled PET studies show that the placebo effects are accompanied by reduction in activation of opioid neural transmission in pain-sensitive brain regions, including rACC, prefrontal cortex, insula, thalamus, amygdala, nucleus accumbens (NAC) and PAG. Further PET studies with dopamine D2/D3 receptor-labeling radiotracer demonstrate that basal ganglia including NAC are related to placebo analgesic responses. NAC dopamine release induced by placebo analgesia is related to expectation of analgesia. These data indicate that the aforementioned brain regions and neurotransmitters such as endogenous opioid and dopamine systems contribute to placebo analgesia.

Keywords

placebo pain functional magnetic resonance imaging positron emission tomography opioid dopamine 

安慰剂镇痛的神经影像学研究

摘要

许多文献资料报道了安慰剂对疼痛的镇痛效果。 人体大脑功能影像技术可以在无创伤条件下研究安慰剂镇痛的大脑功能解剖结构及其神经生物学机制。 功能磁共振成像和正电子发射断层扫描(PET)的脑血流测定表明大脑前扣带回喙部(rACC)、 脑岛、 丘脑和脑干的中脑导水管周围灰质(PAG)及延髓头端腹侧部的神经兴奋性降低与安慰剂镇痛调节有关。 内源性吗啡肽系统及激活吗啡肽μ受体参与安慰剂的镇痛作用。 吗啡肽μ受体标记的PET影像研究提示安慰剂镇痛伴随着疼痛相关大脑部位(如rACC、 前额叶皮层、 脑岛、 丘脑、 杏仁核、 伏隔核、 PAG 等)中内源性吗啡肽活性的降低。 此外, 标记多巴胺D2/D3 受体的PET 实验证明基底核包括伏隔核的多巴胺活性与安慰剂镇痛相关。 安慰剂镇痛引起的伏隔核的多巴胺释放与安慰剂 期待相关。 以上结果提示上述大脑区域和内源性吗啡肽及多巴胺在安慰剂镇痛方面有重要作用。

关键词

安慰剂 疼痛 功能磁共振成像 正电子发射断层扫描术 吗啡肽 多巴胺 

CLC number

R338.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hróbjartsson A, Gøtzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med 2001, 344: 1594–1602.PubMedCrossRefGoogle Scholar
  2. [2]
    Hróbjartsson A, Gøtzsche PC. Is the placebo powerless? Update of a systematic review with 52 new randomized trials comparing placebo with no treatment. J Intern Med 2004, 256: 91–100.PubMedCrossRefGoogle Scholar
  3. [3]
    Wampold BE, Minami T, Tierney SC, Baskin TW, Bhati KS. The placebo is powerful: estimating placebo effects in medicine and psychotherapy from randomized clinical trials. J Clin Psychol 2005, 61: 835–854.PubMedCrossRefGoogle Scholar
  4. [4]
    Melzack R, Torgerson WS. On the language of pain. Anesthesiology 1971, 34: 50–59.PubMedCrossRefGoogle Scholar
  5. [5]
    Vase L, Riley JL, Price DD. A comparison of placebo effects in clinical analgesic trials versus studies of placebo analgesia. Pain 2002, 99: 443–452.PubMedCrossRefGoogle Scholar
  6. [6]
    Benedetti F, Mayberg HS, Wager TD, Stohler CS, Zubieta JK. Neurobiological mechanisms of the placebo effect. J Neurosci 2005, 25: 10390–10402.PubMedCrossRefGoogle Scholar
  7. [7]
    Price DD, Finniss DG, Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought. Annu Rev Psychol 2008, 59: 565–590.PubMedCrossRefGoogle Scholar
  8. [8]
    Zubieta JK, Stohler CS. Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci 2009, 1156: 198–210.PubMedCrossRefGoogle Scholar
  9. [9]
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004, 303: 1162–1167.PubMedCrossRefGoogle Scholar
  10. [10]
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412: 150–157.PubMedCrossRefGoogle Scholar
  11. [11]
    Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 2006, 120: 8–15.PubMedCrossRefGoogle Scholar
  12. [12]
    Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia-imaging a shared neuronal network. Science 2002, 295: 1737–1740.PubMedCrossRefGoogle Scholar
  13. [13]
    Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009, 63: 533–543.PubMedCrossRefGoogle Scholar
  14. [14]
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001, 24: 167–202.PubMedCrossRefGoogle Scholar
  15. [15]
    Vogt BA, Sikes RW, Vogt LJ. Anterior cingulate cortex and the medial pain system. In: Gabriel M, Editor, Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook, Birkhäuser, Boston, MA 1993, pp 313–344.Google Scholar
  16. [16]
    Fields HL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 2000, 122: 245–253.PubMedCrossRefGoogle Scholar
  17. [17]
    Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet 1978, 2: 654–657.PubMedCrossRefGoogle Scholar
  18. [18]
    Gracely RH, Dubner R, Wolskee PJ, Deeter WR. Placebo and naloxone can alter post-surgical pain by separate mechanisms. Nature 1983, 306: 264–265.PubMedCrossRefGoogle Scholar
  19. [19]
    Grevert P, Albert L, Goldstein A. Partial antagonism of placebo analgesia by naloxone. Pain 1983, 16: 129–143.PubMedCrossRefGoogle Scholar
  20. [20]
    Levine JD, Gordon NC. Influence of the method of drug administration on analgesic response. Nature 1984, 312: 755–756.PubMedCrossRefGoogle Scholar
  21. [21]
    Benedetti F. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 1996, 64: 535–543.PubMedCrossRefGoogle Scholar
  22. [22]
    Zubieta JK, Smith Y, Bueller J, Xu Y, Kilbourn M, Meyer C, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001, 293: 311–315.PubMedCrossRefGoogle Scholar
  23. [23]
    Zubieta JK, Smith Y, Bueller J, Xu Y, Woike T, Kilbourn M, et al. μ-Opioid receptor mediated antinociception differs in men and women. J Neurosci, 2002, 22: 5100–5107.PubMedGoogle Scholar
  24. [24]
    Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science2003, 299: 1240–1243.PubMedCrossRefGoogle Scholar
  25. [25]
    Wager TD, Scott DJ, Zubieta JK. Placebo effects on human muopioid activity during pain. Proc Natl Acad Sci U S A 2007, 104: 11056–11061.PubMedCrossRefGoogle Scholar
  26. [26]
    Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al. Placebo effects mediated by endogenous opioid activity on m-opioid receptors. J Neurosci 2005, 25: 7754–7762.PubMedCrossRefGoogle Scholar
  27. [27]
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry 2008, 65: 220–231.PubMedCrossRefGoogle Scholar
  28. [28]
    Vase L, Robinson ME, Verne GN, Price DD. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 2005, 115: 338–347.PubMedCrossRefGoogle Scholar
  29. [29]
    de la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 2001, 293: 1164–1166.PubMedCrossRefGoogle Scholar
  30. [30]
    de la Fuente-Fernández R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, et al. Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 2002, 136: 359–363.PubMedCrossRefGoogle Scholar
  31. [31]
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 2007, 55: 325–336.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Institutes for Biological Sciences, CAS and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Yun-Hai Qiu (秋云海)
    • 1
  • Xin-Yin Wu (吴心音)
    • 1
  • Hao Xu (徐昊)
    • 1
    • 2
  • David Sackett
    • 3
  1. 1.Research Centre for Neural Engineering, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advance TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina
  3. 3.College of LSAUniversity of MichiganAnn ArborUSA

Personalised recommendations